Abstract:
A process extracts liquid from a fabric having a first content of liquid through the use of a mechanical extraction means and penetration of a surfactant monolayer created at the air-liquid interface of the first liquid contained in the fabric by a surfactant penetrant.
Abstract:
A process of extracting liquid from a fabric having a first content of liquid includes the steps of creating a surfactant surface layer including at least one surfactant at an air-liquid interface of the liquid on the fabric, wherein the surface layer has a first surface tension, and adding at least one co-surfactant different from the surfactant. The surfactant and said co-surfactant have substantial chain length compatibility. The co-surfactant reduces the surface tension at the air-liquid interface. The fabric is then subjected to mechanical extraction for a period of time to reduce the liquid content of the fabric from the first content of liquid to a second liquid content.
Abstract:
According to some embodiments, systems for an improved heat exchanger may be provided. In some embodiments, a heat exchanger may comprise a core defining a cavity, a plurality of fins extending outwardly from the core, and an element disposed within the cavity of the core, wherein the element is to direct fluid within the cavity.
Abstract:
A clutch adapted for use to move media in an image forming apparatus having an independently rotatable first race, an independently rotatable second race, and an open central section within the interior of the first and second races. The clutch has a bearing movable between an engaged position in simultaneously contact with the first and second races to transmit a rotational torque from the first race to the second race and a second disengaged position moveable through the open central section. During torque transmission, the bearing simultaneously engages one of a plurality of spaced-apart fins disposed around the open central section on the first race and one of a plurality of spaced-apart catches on the second race disposed outside of the plurality of fins.
Abstract:
An integrated fuser unit has a drive system with a motor and a drive train mounted in the fuser unit frame. A swing arm assembly engages and disengages the hot roll from the drive train.
Abstract:
There is provided by this invention a wafer probe for measuring plasma and surface characteristics in plasma processing environment that utilizes integrated sensors on a wafer substrate. A microprocessor mounted on the substrate receives input signals from the integrated sensors to process, store, and transmit the data. A wireless communication transceiver receives the data from the microprocessor and transmits information outside of the plasma processing system to a computer that collects the data during plasma processing. The integrated sensors may be dual floating Langmuir probes, temperature measuring devices, resonant beam gas sensors, or hall magnetic sensors. There is also provided a self-contained power source that utilizes the plasma for power that is comprised of a topographically dependent charging device or a charging structure that utilizes stacked capacitors.
Abstract:
There is provided by this invention a wafer probe for measuring plasma and surface characteristics in plasma processing environment that utilizes integrated sensors on a wafer substrate. A microprocessor mounted on the substrate receives input signals from the integrated sensors to process, store, and transmit the data. A wireless communication transceiver receives the data from the microprocessor and transmits information outside of the plasma processing system to a computer that collects the data during plasma processing. The integrated sensors may be dual floating Langmuir probes, temperature measuring devices, resonant beam gas sensors, or hall magnetic sensors. There is also provided a self-contained power source that utilizes the plasma for power that is comprised of a topographically dependent charging device or a charging structure that utilizes stacked capacitors.
Abstract:
Systems, methods and apparatus for regulating ion energies and ion energy distributions along with calibrating a bias source and a plasma processing chamber are disclosed. An exemplary method includes applying a periodic voltage function to a load emulator, which emulates electrical characteristics of a plasma load and associated electronics such as an e-chuck. The load emulator can be measured for various electrical parameters and compared to expected parameters generated by the bias source. Differences between measured and expected values can be used to identify and correct faults and abnormalities in the bias supply, the chamber, or a power source used to ignite and sustain the plasma. Once the bias supply is calibrated, the chamber can be calibrated by measuring and calculating an effective capacitance comprising a series and parallel capacitance of the substrate support and optionally the substrate.
Abstract:
An apparatus and associated methodology for a data storage system having a data storage space operably transferring user data via input/output (I/O) commands between the data storage system and another device. The data storage space includes a first memory device operably storing location information for a selected user data set corresponding to one of the I/O commands. The first memory also operably stores a first amount of the selected user data set. The data storage space also includes a second memory device different than the first memory device and operably storing a different second amount of the selected user data set. The data storage system has a controller that interleaves an entirety of the selected user data set from the first and second memory devices during execution of another of the I/O commands.
Abstract:
This disclosure describes systems, methods, and apparatus for capacitively coupling energy into a plasma to ignite and sustain the plasma within a remote plasma source. The power is provided by a first electrode that at least partially surrounds or is surrounded by a second electrode. The second electrode can be grounded or floating. First and second dielectric components can be arranged to separate one or both of the electrodes from the plasma and thereby DC isolate the plasma from one or both of the electrodes.