摘要:
A method is provided for the integration of an optical gain material into a Complementary metal oxide semiconductor device, the method comprising the steps of: configuring a workpiece from a silicon wafer upon which is disposed an InP wafer bearing an epitaxy layer; mechanically removing the InP substrate; etching the InP remaining on epitaxy layer with hydrochloric acid; depositing at least one Oxide pad on revealed the epitaxy layer; using the Oxide pad as a mask during a first pattern etch removing the epitaxy to an N level; etching with a patterned inductively coupled plasma (ICP) technique; isolating the device on the substrate with additional pattern etching patterning contacts, applying the contacts.
摘要:
An improved method for manufacturing a lateral germanium detector is disclosed. A detector window is opened through an oxide layer to expose a doped single crystalline silicon layer situated on a substrate. Next, a single crystal germanium layer is grown within the detector window, and an amorphous germanium layer is grown on the oxide layer. The amorphous germanium layer is then polished to leave only a small portion around the single crystal germanium layer. A dielectric layer is deposited on the amorphous germanium layer and the single crystal germanium layer. Using resist masks and ion implants, multiple doped regions are formed on the single crystal germanium layer. After opening several oxide windows on the dielectric layer, a refractory metal layer is deposited on the doped regions to form multiple germanide layers.
摘要:
A system is provided for the manufacture of carbon based electrical components including, an ultraviolet light source; a substrate receiving unit whereby a substrate bearing a first layer of carbon based semiconductor is received and disposed beneath the ultraviolet light source; a mask disposed between the ultraviolet light source and the carbon based semiconductor layer; a doping agent precursor source; and environmental chemical controls, configured such that light from the ultraviolet light source irradiates a doping agent precursor and the first carbon layer.
摘要:
A waveguide optical gyroscope is disclosed. The waveguide optical gyroscope includes a laser, two detectors, a set of couplers and a set of waveguides. The laser generates a light beam. A first waveguide guides the light beam to travel in a first direction, and a second waveguide guides the light beam to travel in a second direction. The first and second waveguides are coupled to several ring waveguides via the couplers. The first detector detects the arrival of the light beam traveling from the first waveguide, and the second detector detects the arrival of the light beam traveling from the second waveguide.
摘要:
A method for growing germanium epitaxial films is disclosed. Initially, a silicon substrate is preconditioned with hydrogen gas. The temperature of the preconditioned silicon substrate is then decreased, and germane gas is flowed over the preconditioned silicon substrate to form an intrinsic germanium seed layer. Next, a mixture of germane and phosphine gases can be flowed over the intrinsic germanium seed layer to produce an n-doped germanium seed layer. Otherwise, a mixture of diborane and germane gases can be flowed over the intrinsic germanium seed layer to produce a p-doped germanium seed layer. At this point, a bulk germanium layer can be grown on top of the doped germanium seed layer.
摘要:
Techniques are disclosed that facilitate fabrication of semiconductors including structures and devices of varying thickness. One embodiment provides a method for semiconductor device fabrication that includes thinning a region of a semiconductor wafer upon which the device is to be formed thereby defining a thin region and a thick region of the wafer. The method continues with forming on the thick region one or more photonic devices and/or partially depleted electronic devices, and forming on the thin region one or more fully depleted electronic devices. Another embodiment provides a semiconductor device that includes a semiconductor wafer defining a thin region and a thick region. The device further includes one or more photonic devices and/or partially depleted electronic devices formed on the thick region, and one or more fully depleted electronic devices formed on the thin region. An isolation area can be formed between the thin region and the thick region.
摘要:
A salicide heater structure for use in thermo-optic and other heat-influenced semiconductor devices is disclosed. In one example embodiment, a system is provided that includes a silicon substrate, and a salicide heating element formed on the substrate, for delivering heat radiation to a heat-influenced semiconductor device. Another example embodiment is a salicide semiconductor system that includes a silicon substrate and a salicide structure formed on the substrate, wherein the salicide structure is for delivering heat radiation to a heat-influenced semiconductor device.
摘要:
A method is provided for the integration of an optical gain material into a Complementary metal oxide semiconductor device, the method comprising the steps of: configuring a workpiece from a silicon wafer upon which is disposed an InP wafer bearing an epitaxy layer; mechanically removing the InP substrate; etching the InP remaining on epitaxy layer with hydrochloric acid; depositing at least one Oxide pad on revealed the epitaxy layer; using the Oxide pad as a mask during a first pattern etch removing the epitaxy to an N level; etching with a patterned inductively coupled plasma (ICP) technique; isolating the device on the substrate with additional pattern etching patterning contacts, appling the contacts.
摘要:
A method for growing germanium epitaxial films is disclosed. Initially, a silicon substrate is preconditioned with hydrogen gas. The temperature of the preconditioned silicon substrate is then decreased, and germane gas is flowed over the preconditioned silicon substrate to form an intrinsic germanium seed layer. Next, a mixture of germane and phosphine gases can be flowed over the intrinsic germanium seed layer to produce an n-doped germanium seed layer. Otherwise, a mixture of diborane and germane gases can be flowed over the intrinsic germanium seed layer to produce a p-doped germanium seed layer. At this point, a bulk germanium layer can be grown on top of the doped germanium seed layer.
摘要:
A method for growing germanium epitaxial films is disclosed. Initially, a silicon substrate is preconditioned with hydrogen gas. The temperature of the preconditioned silicon substrate is then decreased, and germane gas is flowed over the preconditioned silicon substrate to form an intrinsic germanium seed layer. Next, a mixture of germane and phosphine gases can be flowed over the intrinsic germanium, seed layer to produce an n-doped germanium seed layer. Otherwise, a mixture of diborane and germane gases can be flowed over the intrinsic germanium seed layer to produce a p-doped germanium seed layer. At this point, a hulk germanium layer can be grown on top of the doped germanium seed layer.