Abstract:
Disclosed is a polymeric surfactant for high dielectric polymer composites, a method of preparing the same, and a high dielectric polymer composite including the same. The polymeric surfactant for high dielectric polymer composites, which includes a head portion having high affinity for a conductive material and a tail portion having high affinity for a polymer resin, forms a passivation layer surrounding the conductive material in the high dielectric polymer composite including the polymeric surfactant, thus ensuring and controlling a high dielectric constant.
Abstract:
Disclosed herein are a novel oligomeric compound with improved dispersion performance and a method for preparing the same. The oligomeric compound comprises a tail structure consisting of hydrophilic and hydrophobic blocks and an amine or imidazole head structure. The dye containing the compound can be used to prepare a paste composition for a semiconductor electrode of a solar cell. A semiconductor electrode produced using the paste composition and a solar cell fabricated using the semiconductor electrode exhibit greatly improved power conversion efficiency and superior processability.
Abstract:
A phosphate dispersant which can improve the efficiency of dispersing nickel metal powder by effectively adsorbing on the surface of the metal powder and preventing aggregation thereof, and a paste composition and a dispersion method using the same are provided. A multilayer ceramic capacitor (MLCC) is also provided. The phosphate dispersant can achieve the optimal dispersion efficiency by strongly adsorbing on the surface of the nickel metal powder. An improvement in the dispersion efficiency as such can consequently suppress aggregation of the nickel metal powder during the preparation of a conductive paste composition containing a nickel metal powder, and therefore a larger amount of the nickel metal powder can be used in the paste composition. The increased amount of nickel metal powder allows producing an internal nickel electrode having improved electric properties and mechanical properties during the production of MLCCs.
Abstract:
A photo-luminescent liquid crystal display (PL LCD) includes: a light control unit which includes a liquid crystal (LC) layer modulating the UV light and electrodes driving the LC layer; and a light emitting layer which emits light by the UV light transmitted through the light control unit. The light emitting layer includes inorganic phosphors and semiconductor quantum dots (QDs) having a quantum confinement effect. The PL LCD includes adding QDs having a high quantum efficiency into luminescent substances having lower light utilization efficiency than other colors, for example, red phosphor having very low quantum efficiency to improve the light utilization efficiency, thereby improving the color balance.
Abstract:
Provided is paste composition that includes inorganic particles, an organic solvent, and a phosphate ester dispersant having a hydrophilic moiety with an alkylene group. The dispersant has good dispersibility and strong viscosity decreasing ability, so that contains more inorganic particles than a conventional paste composition at the same viscosity. Thus, a display device prepared using the paste composition has a better packing density.
Abstract:
A fabrication method for a MEMS structure, the MEMS structure including a fixing portion fixed to the substrate and a floating portion floating above the substrate. A sacrificial layer deposited on the substrate is patterned to have a groove forming a space surrounding the area corresponding to the area in which the fixing portion is to be formed. If the MEMS structure is deposited on the sacrificial layer, a sidewall is formed inside the space and the fixing portion and the floating portion are formed on the sacrificial layer. If the sacrificial layer is removed using an etchant, the sacrificial layer at the bottom of the fixing portion is protected from the etchant by the sidewall and accordingly, the sacrificial layer except the area surrounded by the sidewall is removed. Therefore, only the sacrificial layer under the floating portion is removed. Because the connecting portion is fabricated to have the same thickness as the fixing portion and the floating portion, a strong/durable MEMS structure is provided. Additionally, the boundary between the fixing portion and the floating portion can be precisely determined, and adjustment of the length of the floating portion can be precisely controlled.
Abstract:
A side-bonding method of a flip-chip semiconductor device, a MEMS device package and a package method using the same, in which firm bonding and insensitivity to surface roughness may be obtained, include forming a UBM on a bonding line of a lower substrate having a semiconductor device formed thereon, plating solder on the UBM on the lower substrate, forming a trench in the upper substrate to contact the lower substrate at a location corresponding to a location of the solder and forming a second UBM in the trench, coupling the upper substrate and the lower substrate by inserting the solder into the trench, and heating the upper substrate and the lower substrate at a temperature higher than a melting point of the solder so that the solder is wetted toward sides of the trench to bond the upper substrate and the lower substrate.
Abstract:
A method for fabricating a MEMS device having a fixing part fixed to a substrate, a connecting part, a driving part, a driving electrode, and contact parts, includes patterning the driving electrode on the substrate; forming an insulation layer on the substrate; patterning the insulation layer and etching a fixing region and a contact region of the insulation layer; forming a metal layer over the substrate; planarizing the metal layer until the insulation layer is exposed; forming a sacrificial layer on the substrate; patterning the sacrificial layer to form an opening exposing a portion of the insulation layer and the metal layer in the fixing region; forming a MEMS structure layer on the sacrificial layer to partially fill the opening, thereby forming sidewalls therein; and selectively removing a portion of the sacrificial layer by etching so that a portion of the sacrificial layer remains in the fixing region.
Abstract:
A thermoelectric material including: a bismuth-tellurium (Bi—Te)-based thermoelectric material matrix; and a nano-metal component distributed in the Bi—Te-based thermoelectric material matrix, wherein a Lotgering degree of orientation in a c-axis direction is about 0.9 to about 1.
Abstract:
A part to be centered during an assembly process includes an effective portion which performs a function and is shaped for insertion into a hole, a reference portion extended from the effective portion and formed substantially perpendicular to a center axis of the effective portion, and an aligning portion extended from the effective portion and formed around the effective portion. When the effective portion of the part is inserted into the hole, a center of the effective portion is automatically aligned with a centerline of the hole.