Abstract:
A method for reconfiguration of a vortex density in a rare earth manganate, to a non-volatile impedance switch having reconfigurable impedance, and to the use thereof as micro-inductance is disclosed. A unique voltage-time profile is applied between a first and a second electrically conductive contact attached to the rare earth manganate, such that the rare earth manganate passes through an ordering temperature in a region of an electric field forming between the two electrically conductive contacts during a cooling process during and after application of the voltage pulse or the voltage ramp, and the vortex density is thus influenced and adjusted locally in the region of the electric field forming between the two electrically conductive contacts.
Abstract:
A capacitance diode or variable capacitance diode includes first and second electrodes and a layer configuration disposed in contact-making fashion between the two electrodes. The layer configuration has, one after the other in a direction from the first electrode towards the second electrode, a layer formed of a ferroelectric material and an electrically insulating layer formed of a dielectric material having electrically charged defects. A method for producing a capacitance diode or a variable capacitance diode, a storage device and a detector including a capacitance diode or a variable capacitance diode are also provided.
Abstract:
The driver circuit contains a first line, which is to be connected to a first terminal of the Pockels cell (18; CP), and a second line, which is to be connected to a second terminal of the Pockels cell (18; CP), wherein the first line and/or the second line have/has an inductance (14, 15; 24, 25).
Abstract:
The invention relates to a method and to a device for the electromagnetic stirring of electrically conductive fluids in the liquid state and/or in the state of onsetting solidification of the fluid, using a rotating magnetic field that is produced in the horizontal plane of a Lorentz force. The aim is to achieve an intensive three-dimensional flow on the inside of the fluid for mixing in the liquid state up to the direct vicinity of solidifying fronts, and to simultaneously ensure an undisturbed, free surface of the fluid. The solution is to change the direction of rotation of the magnetic field rotating in the horizontal plane at regular time intervals in the form of a period duration, wherein the frequency of the directional change of movement of the magnetic field vector is adjusted such that in the state of mixing the liquid fluid a period duration is adjusted between two directional changes of the magnetic field during a time interval as a function of the adjustment time with the condition (I) 0.5·ti.a
Abstract:
Disclosed herein is a grid sensor, a grid sensor system, a measuring device, and a computer program for correcting an interference caused by one or more fluids. The grid sensor includes a fluid guide region, an electrode, a reference element, and a plurality of grid sensor units, each of which include a group of sensor elements configured to generate measurement signals representing one or more properties of a fluid guided in the fluid guide region. The sensor elements are connected to the electrode for operating the sensor elements. The reference element is associated with the electrode, connected to the electrode, and configured to provide a reference signal representing an interference from the fluid guided in the fluid guide region on an electrical characteristic of the electrode.
Abstract:
A transparent specimen slide on which the range and the magnitude of the near-surface electrostatic forces can be influenced and set during a process of producing the specimen slide. The specimen slide has a surface on the supporting side and a surface facing away from the supporting side and at least three layers: an electrically insulating first layer, a silicon-containing second layer arranged on the first layer, and an electrically insulating third layer arranged on the second layer. An interface is formed between the first and second layers and between the second and third layers with a first surface charge density. The interface between the second and third layers has a second surface charge density. The first and second surface charge densities have the same or different signs.
Abstract:
A compound of general formula I Residues X1a, X1b, X2a, X2b, X3a, X3b, X4a, X4b, X5a, and X5b each independently are hydrogen or deuterium, with the provision that at least one of residues X1a, X1b, X2a, X2b, X3a, X3b, X4a, X4b, X5a, and X5b is deuterium.
Abstract:
A method for producing silicon-based anodes for secondary batteries carries out the following steps for producing an anode: —depositing a silicon layer on a metal substrate having grain boundaries, wherein the silicon layer has a first boundary surface directed towards the metal substrate, —heating the metal substrate using a heating unit to a temperature between 200° C. and 1000° C., —conditioning the region of the second boundary surface of the silicon layer that is facing away from the metal substrate using an energy-intensive irradiation during the heating, generating polyphases in the region of the silicon layer and the metal substrate, made up of amorphous silicon and/or crystalline silicon of the silicon of the silicon layer and of crystalline metal of the metal substrate and of silicide and—generating crystalline metal of the metal substrate.
Abstract:
A method for producing silicon-based anodes for secondary batteries carries out the following steps for producing an anode: —depositing a silicon layer on a metal substrate having grain boundaries, wherein the silicon layer has a first boundary surface directed towards the metal substrate, —heating the metal substrate using a heating unit to a temperature between 200° C. and 1000° C., —conditioning the region of the second boundary surface of the silicon layer that is facing away from the metal substrate using an energy-intensive irradiation during the heating, —generating polyphases in the region of the silicon layer and the metal substrate, made up of amorphous silicon and/or crystalline silicon of the silicon of the silicon layer and of crystalline metal of the metal substrate and of silicide and—generating crystalline metal of the metal substrate.
Abstract:
The present invention relates to a method for the preparation of nanoscale nucleic acid-encircled lipid bilayers, the nanoscale nucleic acid-encircled lipid bilayers and their use.