Abstract:
A method for selecting amino acid residues is disclosed which upon replacement will give rise to an enzyme with an altered pH optimum. The method is specific for metalloenzymes which are inactivated at low pH due to the dissociation of the metal ions. The method is based on altering the pK.sub.a of the metal coordinating ligands or altering the K.sub.ass for the metal binding. New glucose isomerases with an altered pH optimum are provided according to this method. These altered properties enable starch degradation to be performed at lower pH values.
Abstract:
The present invention is related to a quantitative structure-based affinity scoring method for peptide/protein complexes. More specifically, the present invention comprises a method that operates on the basis of a highly specific force field function (e.g. CHARMM) that is applied to all-atom structural representations of peptide/receptor complexes. Peptide side-chain contributions to total affinity are scored after detailed rotameric sampling followed by controlled energy refinement. The method of the invention further comprises a de novo approach to estimate dehydration energies from the simulation of individual amino acids in a solvent box filled with explicit water molecules and applying the same force field function as used to evaluate peptide/receptor complex interactions.
Abstract:
The present invention relates to a method for structure-based prediction of properties of peptides and peptide analogs in complex with major histocompatibility (MHC) class I and class II molecules. The said properties mainly relate to the three-dimensional structure of an MHC/peptide complex and the binding affinity of a peptide for an MHC receptor. The invention further relates to a computer program and a device therefor. The invention further relates to data produced by a method of the invention. The invention further relates to peptides and peptide analogs predicted to bind to target-MHC molecules. The present invention thus relates to the field of immunology, with possible applications in manufacture of vaccinates, de-immunization of proteins, and manufacture of therapeutic agents, especially immunotherapeutic agents.
Abstract:
The present invention relates to a method for structure-based prediction of properties of peptides and peptide analogs in complex with major histocompatibility (MHC) class I and class II molecules. The said properties mainly relate to the three-dimensional structure of an MHC/peptide complex and the binding affinity of a peptide for an MHC receptor. The invention further relates to a computer program and a device therefor. The invention further relates to data produced by a method of the invention. The invention further relates to peptides and peptide analogs predicted to bind to target-MHC molecules. The present invention thus relates to the field of immunology, with possible applications in manufacture of vaccinates, de-immunization of proteins, and manufacture of therapeutic agents, especially immunotherapeutic agents.
Abstract:
The present invention is directed to peptides, and nucleic acids encoding them, derived from the Hepatitis C Virus (HCV). The peptides are those which elicit a CTL and/or HTL response in a host. The invention is also directed to compositions and vaccines for prevention and treatment of HCV infection and diagnostic methods for detection of HCV exposure in patients.
Abstract:
A method for selecting amino acid residues is disclosed which upon replacement will give rise to an enzyme with an altered pH optimum. The method is specific for metalloenzymes which are inactivated at low pH due to the dissociation of the metal ions. The method is based on altering the pK.sub.a of the metal coordinating ligands or altering the K.sub.ass for the metal binding. New glucose isomerases with an altered pH optimum are provided according to this method. These altered properties enable starch degradation to be performed at lower pH values.
Abstract:
The invention pertains to a method for the production of a biologically active modified protein derived from a starting protein having essentially the same kind of biological activity with an attendant modulation effect on, particularly increase of, the stability as compared with that of the starting protein. The method comprises substituting an arginine residue for a lysine residue of the starting protein at a site that can sterically accommodate the substitution, without substantially altering the biological activity of the starting protein, said site being preferably of low solvent accessibility, at interfaces between domains or sub-units of the starting protein.