Abstract:
A device includes a first circuit having rows and columns of delay cells to generate delayed signals based on an input signal. The delayed signals are selectable and have a different delay from one another with respect to the input signal. The device is programmable based on a delay code. Different values of the delay code allow the device to select different delayed signals. The device may select one of the delayed signals from the first circuit for use as a timing signal in a second circuit of the device. The device may also use the delayed signals from the first circuit to evaluate a clock and data recovery circuit. In an embodiment, the circuits may be located on a single die.
Abstract:
A digital signature collection and authentication system includes an ink pen having an ultrasonic transmitter that transmits ultrasonic energy to a plurality of ultrasonic receivers. A computer triangulates the location of the pen versus time to generate the signature shape, and to generate velocity and acceleration data. The pen also includes a pressure sensitive tip to record pressure applied to the pen tip. The pen also includes a higher frequency burst transmitter useful to generate a time reference, and to transmit the pressure information. The computer packetizes the shape, velocity, acceleration, and pressure data with a time stamp and an IP address or phone number, encrypts the packet and sends it to a host computer for authentication.
Abstract:
A voltage droop detector captures the very high-frequency noise on the power grid of a load, such as a microprocessor. The droop detector includes twin circuits, one of which receives the voltage from the power grid of the load, the other of which receives a filtered voltage. A 0th droop, as well as 1st droops, 2nd droops, and so on, are captured and stored for subsequent analysis. The circuits sample the voltages frequently enough to ensure that all droop events are captured. Other embodiments are described and claimed.
Abstract:
According to some embodiments, a circuit includes a ring oscillator delay stage. The delay stage may include a first transistor, a second transistor, and an active inductor. A gate of the first transistor may receive a first input signal, a gate of the second transistor may receive a second input signal, a source of the second transistor may be coupled to a source of the first transistor, and the active inductor may be coupled to a drain of the first transistor.
Abstract:
A clock and data recovery circuit is provided that includes a phase/frequency detector to receive input data and multiphase clock signals. The phase/frequency detector including a first set of flip-flop circuits each to sample the input data at one of the multiphase clock signals and each to output a sampled data, and a second set of flip-flop circuits to retime the sampled data based on a similar clock signal applied to each of the second set of flip-flop circuits.
Abstract:
A light-emitting device and optical communication system based on the light-emitting device is disclosed. The light-emitting device is formed in a float-zone substrate. The light-emitting device includes on the substrate lower surface a reflective layer and on the upper surface spaced apart doped regions. The portion of the upper surface between the doped regions is textured and optionally covered with an antireflection coating to enhance light emission. The light-emitting device can operate as a laser or as a light-emitting diode, depending on the reflectivities of the antireflection coating and the reflective layer.
Abstract:
A system and method for sampling a data stream generates a number of clock signals having equally spaced phases and then samples a data stream using the clock signals. The clock phases are preferably based on a predetermined fraction of a data rate frequency of the data stream, and sampling is performed based on predetermined combinations of the clock signals. While the system and method is suitable for sampling data transmitted for a wide variety of data rates, the system and method is especially well-suited to sampling at data transmitted at high rates, for example, equal to or greater than 20 Gb/s.
Abstract:
The invention relates to a process for converting alpha acid and isoalpha acids to tetrahydroisoalpha acid. The process comprises isomerizing an alpha acid to produce isoalpha acid and hydrogenating the isoalpha acid in the presence of a noble metal catalyst wherein, the noble metal catalyst is added incrementally or continuously throughout the hydrogenation step. The invention also relates to tetrahydroisoalpha acids made by the above process.
Abstract:
Transgenic plants are provided comprising a plurality of transgenes comprised in a single locus. In certain aspects, 7 or more transgenes may be expressed from a first locus. Methods are provided for transformation of plant cells with a plurality of transgenes. Also provided are methods for expressing and enhancing the expression of one or more transgenes in a plant.
Abstract:
A digital signature collection and authentication system includes an ink pen having an ultrasonic transmitter that transmits ultrasonic energy to a plurality of ultrasonic receivers. A computer triangulates the location of the pen versus time to generate the signature shape, and to generate velocity and acceleration data. The pen also includes a pressure sensitive tip to record pressure applied to the pen tip. The pen also includes a higher frequency burst transmitter useful to generate a time reference, and to transmit the pressure information. The computer packetizes the shape, velocity, acceleration, and pressure data with a time stamp and an IP address or phone number, encrypts the packet and sends it to a host computer for authentication.