Abstract:
An instruction compressing apparatus and method for a parallel processing computer such as a very long instruction word (VLIW) computer, are provided. The instruction compressing apparatus includes a bundle code generating unit, an instruction compressing unit, and an instruction converting unit. The bundle code generating unit may generate a bundle code in response to an input of instructions to be compressed. The bundle code may indicate whether a current instruction group is terminated, and also whether an instruction group following the current instruction group is a no-operation (NOP) instruction group. The instruction compressing unit may remove a NOP instruction and/or a NOP instruction group from the input instructions according to the generated bundle code. The instruction converting unit may include the generated bundle code in the remaining instructions which have not been removed by the instruction compressing unit.
Abstract:
Methods and apparatus for manufacturing high purity polysilicon. The apparatus includes a vacuum chamber; first and second electron guns disposed at an upper side of the vacuum chamber to irradiate electron beams into the vacuum chamber; a silicon melting unit which is placed on a first electron beam-irradiating region corresponding to the first electron gun and to which powdery raw silicon is fed and melted by the first electron beam; and a unidirectional solidification unit placed on a second electron beam-irradiating region corresponding to the second electron gun. The unidirectional solidification unit is provided therein with a start block driven in a downward direction to transfer molten silicon in the downward direction and is formed at a lower side thereof with a cooling channel. The start block includes a dummy bar having a silicon button joined to an upper portion of the dummy bar.
Abstract:
The present disclosure provides an apparatus for manufacturing a silicon substrate for solar cells using continuous casting, which can improve quality, productivity and energy conversion efficiency of the silicon substrate. The apparatus includes a crucible unit configured to receive raw silicon and having a discharge port, a heating unit provided to an outer wall and an external bottom surface of the crucible unit and heating the crucible unit to form molten silicon, a casting unit casting the molten silicon into a silicon substrate, a cooling unit rapidly cooling the silicon substrate, and a transfer unit disposed at one end of the cooling unit and transferring the silicon substrate. The casting unit includes a casting unit body having a casting space defined therein to be horizontally connected to the discharge port, and an assistant heating mechanism that preheats the casting unit body to control a solidification temperature of the silicon substrate.
Abstract:
An apparatus and method for dynamically determining the execution mode of a reconfigurable array are provided. Performance information of a loop may be obtained before and/or during the execution of the loop. The performance information may be used to determine whether to operate the apparatus in a very long instruction word (VLIW) mode or in a coarse grained array (CGA) mode.
Abstract:
Apparatus and method for manufacturing high purity polysilicon. The apparatus includes a vacuum chamber maintaining a vacuum atmosphere; first and second electron guns disposed at an upper side of the vacuum chamber to irradiate electron beams into the vacuum chamber; a silicon melting unit placed on a first electron beam-irradiating region corresponding to the first electron gun and in which powdery raw silicon is placed and melted by the first electron beam; and a unidirectional solidification unit placed on a second electron beam-irradiating region corresponding to the second electron gun and connected to the silicon melting unit via a runner. The unidirectional solidification unit is formed at a lower part thereof with a cooling channel and is provided therein with a start block driven in a downward direction.
Abstract:
A processing apparatus includes a loading chamber; a buffer chamber connected to the loading chamber; a first process chamber connected to the buffer chamber; and an unloading chamber connected to the first process chamber, wherein a processing path through the processing apparatus is a forward in-line path in a direction through the loading chamber, the buffer chamber, the first process chamber, and the unloading chamber.
Abstract:
A liquid crystal display device includes an array substrate and a color filter substrate, a plurality of gate lines and a plurality of data lines formed on the array substrate such that the gate lines and the data lines intersect each other to define a plurality of pixel regions, a plurality of thin film transistors formed at respective intersections of the gate lines and the data lines, a liquid crystal layer interposed between the array and color filter substrates, and a plurality of repair patterns formed on the first substrate. Each of the plurality of the repair patterns crosses a corresponding one of the data lines, and is along and adjacent to a corresponding one of the gate lines, such that the repair pattern includes protruding ends that protrude from the corresponding data line to repair a defect on the pixel regions.
Abstract:
Methods and apparatus for manufacturing high purity polysilicon. The apparatus includes a vacuum chamber; first and second electron guns disposed at an upper side of the vacuum chamber to irradiate electron beams into the vacuum chamber; a silicon melting unit which is placed on a first electron beam-irradiating region corresponding to the first electron gun and to which powdery raw silicon is fed and melted by the first electron beam; and a unidirectional solidification unit placed on a second electron beam-irradiating region corresponding to the second electron gun. The unidirectional solidification unit is provided therein with a start block driven in a downward direction to transfer molten silicon in the downward direction and is formed at a lower side thereof with a cooling channel. The start block includes a dummy bar having a silicon button joined to an upper portion of the dummy bar.
Abstract:
There is disclosed an apparatus for manufacturing a silicon substrate including a crucible part, a molding part extended from an outlet of the crucible part, the molding part comprising a molding space where a silicon substrate is formed, and a dummy bar inserted in the molding space from a predetermined portion of the molding part, wherein the dummy bar is formed of a single-crystalline material.
Abstract:
There is provided a method of localizing an object comprising projecting an object located on an object plane and a reference point corresponding thereto on a virtual viewable plane and an actual camera plane; estimating coordinates of the reference point; and prescribing a relationship between a location of the object and the coordinates of the reference point.