Abstract:
[Problem]To provide a novel PIM-3 inhibitor and a novel cancer therapeutic drug, in particular, a therapeutic drug for pancreatic cancer.[Solution]A PIM-3 kinase inhibitor comprising a compound represented by general formula (I) or a pharmacologically acceptable salt, hydrate or solvate thereof.
Abstract:
The detection range and the detection precision of a sensor device that makes use of the deformation of a viscoelastic elastomer are made variable. The sensor device comprises a magnetic viscoelastic elastomer containing electroconductive magnetic particles dispersed therein so as to demonstrate an elastic modulus that varies depending on a magnetic field applied thereto and an electric resistance in a prescribed direction that varies depending on a deformation thereof, electromagnets for applying a magnetic field that can be varied to the magnetic viscoelastic elastomer, a resistance detection circuit for detecting the electric resistance of the magnetic viscoelastic elastomer, and a control unit for computing at least one of a deformation state of the magnetic viscoelastic elastomer and a load applied to the magnetic viscoelastic elastomer according to a detection value of the resistance detection circuit and a magnitude of the magnetic field applied by the electromagnets.
Abstract:
The present invention provides an optically active poly(diphenylacetylene) compound represented by the following formula (I): [wherein each symbol is as described in the DESCRIPTION], and a production method thereof, an optical isomer separating agent containing the poly(diphenylacetylene) compound, and a packing material for a chiral column, containing the optical isomer separating agent coated on a carrier. According to the present invention, a practical optical isomer separation agent having a high optical resolution ability for a wide variety of racemic compounds and an optical isomer separation method can be provided.
Abstract:
The present invention provides a method and a reagent for detecting a digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer patient by analyzing genes with expression levels (in peripheral blood) that vary in association with digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer cases, compared with normal healthy subjects. Specifically, the method for detecting a digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer patient based on expression profiles comprises obtaining the expression profile of at least one gene selected from the group consisting of probes corresponding to genes with expression levels (in peripheral blood) that vary in digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, and biliary tract cancer cases, compared with normal healthy subjects. The reagent for detecting digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer contains nucleotides or partial sequences thereof consisting of the nucleotide sequence of at least one gene selected from the group consisting of probes with expression levels that vary in digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer, or nucleotides containing sequences complementary thereto.
Abstract:
The present invention provides a method and a reagent for detecting a digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer patient based on expression profiles. The method comprises obtaining the expression profile of at least one gene selected from the group consisting of probes corresponding to genes with expression levels (in peripheral blood) that vary in digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, and biliary tract cancer cases, compared with normal healthy subjects. The reagent for detecting digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer contains nucleotides or partial sequences thereof consisting of the nucleotide sequence of at least one gene selected from the group consisting of probes with expression levels that vary in digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer, or nucleotides containing sequences complementary thereto.
Abstract:
The detection range and the detection precision of a sensor device that makes use of the deformation of a viscoelastic elastomer are made variable. The sensor device comprises a magnetic viscoelastic elastomer containing electroconductive magnetic particles dispersed therein so as to demonstrate an elastic modulus that varies depending on a magnetic field applied thereto and an electric resistance in a prescribed direction that varies depending on a deformation thereof, electromagnets for applying a magnetic field that can be varied to the magnetic viscoelastic elastomer, a resistance detection circuit for detecting the electric resistance of the magnetic viscoelastic elastomer, and a control unit for computing at least one of a deformation state of the magnetic viscoelastic elastomer and a load applied to the magnetic viscoelastic elastomer according to a detection value of the resistance detection circuit and a magnitude of the magnetic field applied by the electromagnets.
Abstract:
A method for manufacturing a copper alloy of the present invention is a method for manufacturing a Cu—Ni—Sn-based copper alloy and includes: a first aging treatment step of performing an aging treatment in a temperature range of 300° C. to 500° C. using a solution treated material; an inter-aging processing step of performing cold working after the first aging treatment step; and a second aging treatment step of performing an aging treatment in a temperature range of 300° C. to 500° C. after the inter-aging processing step. In the first aging treatment step, a peak aging treatment is preferably performed. In addition, in the second aging treatment step, the aging treatment is preferably performed for a short period as compared to that of the aging treatment in the first aging treatment step. In the inter-aging processing step, cold working is preferably performed at a processing rate of more than 60% to 99%.
Abstract:
A signal detection circuit includes: a VCO that generates a reference signal; a complex signal generation circuit that generates a complex signal from an input signal and the reference signal; a vector operation circuit that calculates an argument of the complex signal by performing a vector operation; and a subtracting phase comparator that compares the argument with a phase of the reference signal by calculating a difference between the argument and the phase of the reference signal, wherein the complex signal generation circuit includes: a multiplication circuit that multiplies the input signal by the reference signal; and an HPF that removes a DC component from a signal output from the multiplication circuit.
Abstract:
The present invention provides a method and a reagent for detecting a digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer patient by analyzing genes with expression levels (in peripheral blood) that vary in association with digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer cases, compared with normal healthy subjects. Specifically, the method for detecting a digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer patient based on expression profiles comprises obtaining the expression profile of at least one gene selected from the group consisting of probes corresponding to genes with expression levels (in peripheral blood) that vary in digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, and biliary tract cancer cases, compared with normal healthy subjects. The reagent for detecting digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer contains nucleotides or partial sequences thereof consisting of the nucleotide sequence of at least one gene selected from the group consisting of probes with expression levels that vary in digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, or biliary tract cancer, or nucleotides containing sequences complementary thereto.
Abstract:
Provided is a sealed AFM cell in which measurement accuracy does not decrease and the types of observation liquids are not limited. A sealed AFM cell according to the present invention includes: a cantilever including a probe; a sample holder for fixing the sample; a scanner for moving the sample holder; a lid part which holds the cantilever so as to position the probe near a measurement surface of the sample; and a main body part which is a component for holding the scanner and positioned opposite the lid part with the sample in between, in which the lid part and the main body part are joined via a sealing liquid to seal the observation liquid inside a space formed by the lid part, the main body part, and the sealing liquid, the sealing liquid being different from the observation liquid and not in contact with the observation liquid.