Abstract:
A field-effect semiconductor element implemented with a reduced number of elements and a reduced area and capable of storing data by itself without need for cooling at a cryogenic temperature, and a memory device employing the same. Gate-channel capacitance is set so small that whether or not a trap captures one electron or hole can definitely and distinctively be detected in terms of changes of a current of the semiconductor FET element. By detecting a change in a threshold voltage of the semiconductor element brought about by trapping of electron or hole in the trap, data storage can be realized at a room temperature. In accordance with one embodiment, a carrier confinement region, isolated from a channel and a gate of the semiconductor FET element, is provided to operate as a storage node for trapping the carrier or carriers.
Abstract:
A memory system is provided which is capable of eliminating deterioration in a processing rate due to possible signal delays between an input/output circuit and memory blocks. Complication of design is also reduced, especially when the scale and chip area of the memory system increase. A memory chip includes a plurality of memory array blocks each including an address buffer and an address counter, and operates on the basis of a local clock cycle. A control circuit is synchronous with a clock of an external device, and synchronous data-transfer circuitry includes a buffer which modulates the transfer rate of serial data which arrives from a memory array block at a local clock cycle so as to be synchronous with the clock of the control circuit. External clock signal lines are not distributed to the memory array blocks.
Abstract:
A highly reliable and high speed ferroelectric memory having a high degree of integration. In a ferroelectric memory having a multiple of memory cells M1, each constituted by one transistor and one ferroelectric capacitor, in the normal operation, the ferroelectric memory is used as a volatile memory in which a voltage on a storage node ST1 stores information in a DRAM mode. Both the electric potential at the plate PL1 of the ferroelectric capacitor and a precharge electric potential on a data line DL1(j) are Vcc/2. When the a power supply voltage is turned on, a polarization state is detected as a ferroelectric memory of a plate electric potential of Vcc/2 and a precharge electric potential of Vss (or Vcc) and the read operation is performed a FERAM mode. The switching between the DRAM mode and the FERAM mode is executed by generating a signal to designate the FERAM mode in the memory along with the turn-on of the power supply and by generating a signal to designate the DRAM mode after completion of the conversion operation from nonvolatile information to volatile information.
Abstract:
A low dielectric constant, a low dielectric loss tangent, and heat resistance are achieved. An active ester resin that has a resin structure produced by reacting a polyfunctional phenolic compound (a1) with a monofunctional aromatic carboxylic acid or its chloride (a2) and an aromatic dicarboxylic acid or its chloride (a3). The polyfunctional phenolic compound (a1) is represented by structural formula (1) below: (where Ar represents a benzene ring, a naphthalene ring, a benzene ring nuclear-substituted by an alkyl group having 1 to 4 carbon atoms, or a naphthalene ring nuclear-substituted by an alkyl group having 1 to 4 carbon atoms, X represents a methylene group, a divalent cyclic aliphatic hydrocarbon group, a phenylene dimethylene group, or a biphenylene-dimethylene group, and n represents the number of repeating units and the average thereof is in a range of 0.5 to 10).
Abstract:
In a semiconductor integrated circuit device having plural layers of buried wirings, it is intended to prevent the occurrence of a discontinuity caused by stress migration at an interface between a plug connected at a bottom thereof to a buried wiring and the buried wiring. For example, in the case where the width of a first Cu wiring is not smaller than about 0.9 μm and is smaller than about 1.44 μm, and the width of a second Cu wiring and the diameter of a plug are about 0.18 μm, there are arranged two or more plugs which connect the first wirings and the second Cu wirings electrically with each other.
Abstract:
A manufacturing technique is disclosed for producing a semiconductor integrated circuit device having plural layers of buried wirings, and such that there is prevented the occurrence of a discontinuity caused by stress migration at an interface between a plug connected at a bottom thereof to a buried wiring and the buried wiring. For example, in the case where the width of a first Cu wiring is not smaller than about 0.9 μm and is smaller than about 1.44 μm, and the width of a second Cu wiring and the diameter of a plug are about 0.18 μm, there are arranged two or more plugs which connect the first wirings and the second Cu wirings electrically with each other.
Abstract:
In an input circuit for semiconductor devices, such as an address buffer, an arrangement is provided which obviates the timing margin from capture of an input signal to its latching and outputting, thereby increasing the operation speed of the input circuit. The address buffer includes a differential amplifier Ai which receives an input signal Ai and outputs a pair of differential signals A-come-first-served latch circuit detects, latches and outputs one of the paired differential signals that has changed first. Activation/inactivation of the differential amplifier is done by turning on and off an N-channel MOS transistor through a Set signal. When activated, the differential amplifier generates a potential difference between the paired differential signals and, when inactivated, has its paired differential signals go low.
Abstract:
A low dielectric constant, a low dielectric loss tangent, and heat resistance are achieved. An active ester resin that has a resin structure produced by reacting a polyfunctional phenolic compound (a1) with a monofunctional aromatic carboxylic acid or its chloride (a2) and an aromatic dicarboxylic acid or its chloride (a3). The polyfunctional phenolic compound (a1) is represented by structural formula (1) below: (where Ar represents a benzene ring, a naphthalene ring, a benzene ring nuclear-substituted by an alkyl group having 1 to 4 carbon atoms, or a naphthalene ring nuclear-substituted by an alkyl group having 1 to 4 carbon atoms, X represents a methylene group, a divalent cyclic aliphatic hydrocarbon group, a phenylene dimethylene group, or a biphenylene-dimethylene group, and n represents the number of repeating units and the average thereof is in a range of 0.5 to 10).
Abstract:
A manufacturing technique is disclosed for producing a semiconductor integrated circuit device having plural layers of buried wirings, and such that there is prevented the occurrence of a discontinuity caused by stress migration at an interface between a plug connected at a bottom thereof to a buried wiring and the buried wiring. For example, in the case where the width of a first Cu wiring is not smaller than about 0.9 μm and is smaller than about 1.44 μm, and the width of a second Cu wiring and the diameter of a plug are about 0.18 μm, there are arranged two or more plugs which connect the first wirings and the second Cu wirings electrically with each other.
Abstract:
In a semiconductor integrated circuit device having plural layers of buried wirings, it is intended to prevent the occurrence of a discontinuity caused by stress migration at an interface between a plug connected at a bottom thereof to a buried wiring and the buried wiring. For example, in the case where the width of a first Cu wiring is not smaller than about 0.9 μm and is smaller than about 1.44 μm, and the width of a second Cu wiring and the diameter of a plug are about 0.18 μm, there are arranged two or more plugs which connect the first wirings and the second Cu wirings electrically with each other.