Abstract:
Apparatuses and methods for determining the concentration of an analyte gas in a gas stream with a sensor are described. The analyte gas sensor may include a mass-sensitive resonator and a diffusion barrier. The mass-sensitive resonator may be coated with an absorptive material which is reactive with an analyte gas, such as NOx. The diffusion barrier may be positioned to limit a gas flow with the analyte gas towards the absorptive material, and a ratio of the diffusion time of the gas flow through the diffusion barrier to the reaction time of the analyte gas with the absorptive material may be from about 0.1 to about 100.
Abstract:
The invention is directed to insulating compositions for use in solid oxide fuel cells. Such compositions can be used to prevent seal damage and increase the electrical and ion efficiency.
Abstract:
The invention is directed to highly crystalline, frit-sintered glass-ceramic materials and seals made using them that are suitable for solid oxide fuel cell applications. The seals have a coefficient of thermal expansion in the range of 70-130×10−7° C., preferably 85-115×10−7° C. The glass-ceramic materials have a crystalline component and a glass component, the crystalline component being >50% of the glass-ceramic and the glass component being 75%. Regarding the crystalline component only, >50% of the crystals in the crystalline component of the glass-ceramic has a structure selected from the structural groups represented by walstromite, cyclowollastonite, μ-(Ca,Sr)SiO3, kalsilite, kaliophilite and wollastonite (the primary crystalline phase) and the remaining
Abstract:
A solid oxide fuel cell device assembly comprising: (i) at least one solid oxide fuel cell device including one electrolyte sheet sandwiched between at least one pair of electrodes; and (ii) a non-steel frame fixedly attached to said at least one fuel cell device without a seal located therebetween.
Abstract:
A solid oxide fuel cell comprising a thin ceramic electrolyte sheet having an increased street width is disclosed. Also disclosed are solid oxide fuel cells comprising: a substantially flat ceramic electrolyte sheet, a substantially flat ceramic electrolyte sheet having a seal area of greater thickness than the active area of the electrolyte sheet, a ceramic electrolyte sheet that overhangs the seal area, a ceramic electrolyte sheet and at least one substantially flat border material, and a border material having a non-linear edge. Methods of making a solid oxide fuel cell in accordance with the disclosed embodiments are also disclosed. Also disclosed are methods of making a solid oxide fuel cell wherein the seal has a uniform thickness, wherein the seal is heated to remove a volatile component prior to sealing, and wherein the distance between the frame and the ceramic electrolyte sheet of the device is constant.
Abstract:
A stress reducing mounting for an electrolyte sheet assembly in a solid electrolyte fuel cell is provided that includes a support frame or manifold having an inner edge portion that supports a peripheral portion of the sheet assembly, a seal that affixes an edge of the peripheral portion to the frame or manifold, and a stress reducer disposed around the peripheral portion of the electrolyte sheet and the frame or manifold that reduces tensile stress in the peripheral portion of the electrolyte sheet when the peripheral portion is bent by pressure differentials or thermal differential expansion. The stress reducer is at least one of a convex curved surface on the inner edge portion of the frame or manifold that makes area contact with the peripheral portion when it bends in response to a pressure differential or thermal differential expansion, and a stiffening structure on the sheet peripheral portion that renders the ceramic sheet material forming the peripheral portion more resistant to bending. The stress reducing mounting reduces cracking in the electrolyte sheet at the peripheral portions due to tensile forces.
Abstract:
Embodiments are directed to glass frits containing phosphors that can be used in LED lighting devices and for methods associated therewith for making the phosphor containing glass frit and their use in glass articles, for example, LED devices.
Abstract:
A flame spray pyrolysis method for making nanoscale, lithium ion-conductive ceramic powders comprises providing a precursor solution comprising chemical precursors dissolved in an organic solvent, and spraying the precursor solution into an oxidizing flame to form a nanoscale, lithium ion-conductive ceramic powder, wherein a concentration of the chemical precursors in the solvent ranges from 1 to 20 M. The precursor solution can comprise 1-20% excess lithium with respect to a stoichiometric composition of the ceramic powder. Nominal compositions of the nanoscale, ceramic powders are Li1.4Al0.4M1.6(PO4)3 where M is Ti or Ge.
Abstract:
A method of forming a solid, dense, hermetic lithium-ion electrolyte membrane comprises combing an amorphous, glassy, or low melting temperature solid reactant with a refractory oxide reactant to form a mixture, casting the mixture to form a green body, and sintering the green body to form a solid membrane. The resulting electrolyte membranes can be incorporated into lithium-ion batteries.
Abstract:
A solid oxide fuel cell that is resistant to seal delamination is disclosed. The solid oxide fuel cell comprises, either individually or in combination, a solid electrically non -conductive frame, a seal structure comprising a material capable of preventing a transfer of charge across the seal during fuel cell operation, and a seal comprising a glass frit that is substantially free of oxides of lithium, sodium, or both lithium and sodium. Methods for manufacturing a solid oxide fuel cell are also disclosed.