摘要:
A double gate metal-oxide semiconductor field-effect transistor (MOSFET) includes a fin, a first gate and a second gate. The first gate is formed on top of the fin. The second gate surrounds the fin and the first gate. In another implementation, a triple gate MOSFET includes a fin, a first gate, a second gate, and a third gate. The first gate is formed on top of the fin. The second gate is formed adjacent the fin. The third gate is formed adjacent the fin and opposite the second gate.
摘要:
An exemplary embodiment relates to a method for forming a metal oxide semiconductor field effect transistor (MOSFET). The method includes providing a substrate having a gate formed above the substrate and performing at least one of the following depositing steps: depositing a spacer layer and forming a spacer around a gate and gate insulator located above a layer of silicon above the substrate; depositing an etch stop layer above the spacer, the gate, and the layer of silicon; and depositing a dielectric layer above the etch stop layer. At least one of the depositing a spacer layer, depositing an etch stop layer, and depositing a dielectric layer comprises high compression deposition which increases in tensile strain in the layer of silicon.
摘要:
A method for forming fin structures for a semiconductor device that includes a substrate and a dielectric layer formed on the substrate is provided. The method includes etching the dielectric layer to form a first structure, depositing an amorphous silicon layer over the first structure, and etching the amorphous silicon layer to form second and third fin structures adjacent first and second side surfaces of the first structure. The second and third fin structures may include amorphous silicon material. The method further includes depositing a metal layer on upper surfaces of the second and third fin structures, performing a metal-induced crystallization operation to convert the amorphous silicon material of the second and third fin structures to a crystalline silicon material, and removing the first structure.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed from a semiconductor or metal layer which is deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be a ALD process.
摘要:
Methods are provided for fabricating a semiconductor device having an impurity doped region in a silicon substrate. The method comprises forming a metal silicide layer electrically contacting the impurity doped region and depositing a conductive layer overlying and electrically contacting the metal silicide layer. A dielectric layer is deposited overlying the conductive layer and an opening is etched through the dielectric layer to expose a portion of the conductive layer. A conductive material is selectively deposited to fill the opening and to electrically contact the impurity doped region.
摘要:
A semiconductor substrate is provided having an insulator thereon with a semiconductor layer on the insulator. A deep trench isolation is formed, introducing strain to the semiconductor layer. A gate dielectric and a gate are formed on the semiconductor layer. A spacer is formed around the gate, and the semiconductor layer and the insulator are removed outside the spacer. Recessed source/drain are formed outside the spacer.
摘要:
A non-volatile memory device includes a substrate, an insulating layer, a fin, an oxide layer, spacers and one or more control gates. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The oxide layer is formed on the fin and acts as a tunnel oxide for the memory device. The spacers are formed adjacent the side surfaces of the fin and the control gates are formed adjacent the spacers. The spacers act as floating gate electrodes for the non-volatile memory device.
摘要:
A FinFET device employs strained silicon to enhance carrier mobility. In one method, a FinFET body is patterned from a layer of silicon germanium (SiGe) that overlies a dielectric layer. An epitaxial layer of silicon is then formed on the silicon germanium FinFET body. A strain is induced in the epitaxial silicon as a result of the different dimensionalities of intrinsic silicon and of the silicon germanium crystal lattice that serves as the template on which the epitaxial silicon is grown. Strained silicon has an increased carrier mobility compared to relaxed silicon, and as a result the epitaxial strained silicon provides increased carrier mobility in the FinFET. A higher driving current can therefore be realized in a FinFET employing a strained silicon channel layer.
摘要:
The present invention relates to a process of fabricating a semiconductor device, including steps of providing a semiconductor wafer; depositing on the semiconductor wafer at least one layer comprising a high-K dielectric material layer; and subsequently removing a selected portion of the at least one layer comprising a high-K dielectric material by implanting ions into the selected portion, and removing the selected portion by etching. As a result of the implantation, the etch rate of the selected portion is increased relative to an etch rate without the implanting.
摘要:
A method of fabricating a transistor having shallow source and drain extensions utilizes a self-aligned contact. The drain extensions are provided through an opening between a contact area and the gate structure. A high-K gate dielectric material can be utilized. P-MOS and N-MOS transistors can be created according to the disclosed method.