Abstract:
The disclosed technology relates to methods of patterning elongated structures. In one aspect, a method of forming pillars includes providing a substrate and providing a plurality of beads on a surface of the substrate. Regions of the surface without a directly overlying bead are exposed. The method additionally includes selectively etching the exposed regions of the substrate between the beads such that a plurality of pillars is formed under areas masked by the beads. Selectively etching completely removes at least some of the beads. The pillars that are not covered by beads are etched, thereby leaving some pillars taller than others, with the pillar height pending on the amount of time a pillar was left exposed to etchant by a removed bead.
Abstract:
This disclosure provides systems, methods, and apparatus for an electromechanical systems (EMS) device with one or more protrusions connected to a surface of the EMS device. In one aspect, the EMS device includes a substrate, a stationary electrode over the substrate, and a movable electrode over the stationary electrode. The movable electrode is configured to move to three or more positions across a gap by electrostatic actuation between the movable electrode and the stationary electrode. When the protrusions contact any surface of the EMS device at one of the positions across the gap, the protrusions change the stiffness of the EMS device. At least one of the surfaces in contact with the one or more protrusions is non-rigid. In some implementations, the protrusions have a height greater than about 20 nm.
Abstract:
This disclosure provides systems, methods and apparatus for illumination devices. In one aspect, an illumination device having a longitudinal axis includes a light source and a light guide. The light guide has a peripheral edge, a transmissive illumination surface, a center portion, and an upper surface. The transmissive illumination surface is oriented perpendicular to the longitudinal axis and disposed between the center portion and the peripheral edge. The upper surface is oriented relative to the illumination surface to define an angle α therebetween. In some implementations, the angle α can be greater than 15 degrees, for example.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for displaying high bit-depth images using spatial vector screening and/or temporal dithering on display devices including display elements that have multiple primary colors. The systems, methods and apparatus described herein can be configured to select a method of rendering high bit-depth images and/or videos on low bit-depth devices based on the operating speed of the display device.
Abstract:
A method and system for reducing power consumption in a display includes driving a display comprising a plurality of display elements having selectable resolution, wherein the display device is configured to operate at a plurality of selectable operational modes. In a first operational mode, data at a first resolution is provided to the display at a first data rate, and in a second operational mode, data at a second resolution is provided to the display at a second data rate.
Abstract:
An optical touch sensor may include traces of photoconductive material formed on a substantially transparent substrate. Each photoconductive trace may be capable of responding to an incident light intensity increase on a portion of the photoconductive trace by increasing the number of charged carriers, thereby raising the electrical conductivity of that portion of the photoconductive trace. An incident light intensity decrease on a portion of the photoconductive trace will lower the electrical conductivity of that portion of the photoconductive trace. The corresponding changes in voltage may be measured by circuits that include conductive traces formed substantially perpendicular to, and configured for electrical connection with, the traces of photoconductive material. A diode (such as a Schottky diode) may be formed at the electrical connections between the conductive traces and the photoconductive traces.
Abstract:
Methods and systems may facilitate access to media. A mobile computing device may manage media associated with links by evaluating factors that may affect battery life. The mobile computing device may obtain information about the media associated with the links, such as metadata indicating file characteristics, identifying information, and analytics. The information may be included in the media or obtained from a server. The mobile computing device may evaluate factors that affect the device's ability to receive and render the media. Such factors may include the battery charge state, signal strength, connectivity, or media characteristics (e.g., size, complexity, etc.). The mobile computing device may prioritize the links associated with the media based on the evaluation of the factors, such as by sorting the links by rank. The mobile computing device may also hide links, display warnings/indicators, display links in particular manners or formats, and automatically download the media.
Abstract:
A particular device includes a coil and a discontinuous magnetic core. The discontinuous magnetic core includes a first elongated portion, a second elongated portion, and at least two curved portions, where the portions are coplanar and physically separated from each other. The discontinuous magnetic core is arranged to form a discontinuous loop. The discontinuous magnetic core is deposited as a first layer above a dielectric substrate. A first portion of the coil extends above a first surface of the magnetic core. A second portion of the coil extends below a second surface of the magnetic core. The second portion of the coil is electrically coupled to the first portion of the coil. The second surface of the magnetic core is opposite the first surface of the magnetic core.
Abstract:
This disclosure provides systems, methods, and apparatus for controlling the actuation of an analog interferometric modulator. In one aspect, a voltage may be determined from a sense electrode. A distance between one or more of the electrodes may be determined based on the voltage. The sense electrode may be capacitively coupled to another electrode, and may be implemented in a mirror of a movable layer of an interferometric modulator, or may be implemented in a floating fixed layer of an interferometric modulator.
Abstract:
Methods and devices for calibrating and controlling the actuation of an analog interferometric modulator configured to have a plurality of actuation states. Devices and methods for calibrating an analog interferometric modulator to respond in linear relation to an applied voltage.