Abstract:
Optical solenoid beams, diffractionless solutions of the Helmholtz equation whose diffraction -limited in-plane intensity peak spirals around the optical axis, and whose wavefronts carry an independent helical pitch. The solenoid beams have the noteworthy property of being able to exert forces on illuminated objects that are directed opposite to the direction of the light's propagation. Optical solenoid beams therefore act as true tractor beams that are capable of transporting material back toward their source.
Abstract:
A method for manipulating a plurality of objects. The method includes the steps of providing a shaping source, applying the shaping source to create a spatially symmetric potential energy landscape, applying the potential energy landscape to a plurality of objects, thereby trapping at least a portion of the plurality of objects in the,24 potential energy landscape, spatially moving the potential energy landscape to manipulate the plurality of objects; and extinguishing the potential energy landscape, thereby causing the plurality of objects to move freely when the potential energy landscape is extinguished.
Abstract:
A rebound resilient golf ball having an core layer or layers with one or more cores, a scuff resistant cover of thermoplastic polyurethane surrounding the core layer or layers, and optionally a mantle layer positioned between the cover and the core layer or layers. The cover is made from a dendritic thermoplastic polyurethane that includes an isocyanate monomer and a hyper branched polyol, optional additional polyols, and one or more chain extenders. An optional mantle layer may also be made of thermoplastic polyurethane, particularly a dendritic thermoplastic polyurethane.
Abstract:
Holographic optical traps using the forces exerted by computer-generated holograms to trap, move and otherwise transform mesoscopically textured materials. The efficacy of the present invention is based upon the quality and nature of the diffractive optical element used to create the traps and dynamically use them. Further a landscape of potential energy sites can be created and used to manipulate, sort and process objects.
Abstract:
Disclosed is a method for manufacturing a fluorescent material. The method includes: putting the fluorescent material into a first solution, and agitating the fluorescent material and the first solution; putting a nano fluorescent material having a nano size into the first solution, and agitating the nano fluorescent material having a nano size and the first solution; and separating supernatant from the first solution including the fluorescent material, and drying the fluorescent material. Disclosed is a light emitting device. The light emitting device includes: a body; a light emitting element mounted on a cavity formed in the body; a resin formed in the cavity; and a fluorescent material added to the resin, wherein a nano fluorescent material having a nano size is adsorbed in the fluorescent material.
Abstract:
A method and system for performing three-dimensional holographic microscopy of an optically trapped structure. The method and system use an inverted optical microscope, a laser source which generates a trapping laser beam wherein the laser beam is focused by an objective lens into a plurality of optical traps. The method and system also use a collimated laser at an imaging wavelength to illuminate the structure created by the optical traps. Imaging light scattered by the optically tapped structure forms holograms that are imaged by a video camera and analyzed by optical formalisms to determine light field to reconstruct 3-D images for analysis and evaluation.
Abstract:
A method and system for providing multi-color holographic optical traps and patterns. The method and system employs a laser beam which interacts with a diffractive optical element with a hologram and for optics which acts to selectively pass or attenuate different light color wavelengths and to position the particular color light at selected different locations to form the different color holographic optical trap patterns and to use these patterns for various commercial purposes.
Abstract:
The present invention relates to a composition comprising extracts of Gramineae plant that improves cell viability under hypoxic conditions by inhibiting apoptosis. Thus, the extract of Triticum aestivum L., one of the Gramineae plant, of the present invention, in particular, prevents damage of brain, heart and kidney in animal models of ischemic diseases, and it also improves memory in an animal model of Alzheimer's disease. Therefore, a composition comprising extracts of Gramineae can be used as therapeutic agents or health care foods for preventing and treating ischemic diseases and degenerative brain diseases.
Abstract:
Phosphor paste compositions, phosphor layers and electron emitting devices are provided. The phosphor paste composition includes a phosphor, a binder including a photocurable monomer and an acrylic resin with an acid value ranging from about 150 mgKOH/g to about 200 mgKOH/g, a photoinitiator, and a solvent. The phosphor layer is obtained from the phosphor paste composition, and the electron emission device includes the phosphor layer. The phosphor paste compositions provide superior phosphor layer pattern resolution, plasticity, printability, and storage stability.