Abstract:
Disclosed is an extruded propylene polymer resin foam comprising a propylene polymer resin exhibiting a biaxial extensional viscosity of at least 3.0.times.10.sup.6 poise at a biaxial extensional strain of 0.2, and a biaxial strain hardening rate .alpha. of at least 0.25, the biaxial strain hardening rate .alpha. being defined by the following formula:.alpha.=0.77.times.(log .eta..sub.2 -log .eta..sub.1)wherein .eta..sub.1 represents the biaxial extensional viscosity at a biaxial extensional strain of 0.01, and .eta..sub.2 represents the biaxial extensional viscosity at a biaxial extensional strain of 0.2,said foam containing a vast plurality of cells, and having a thickness of at least 20 mm, a density of from 0.005 to 0.03 g/cm.sup.3, an average cell diameter of from 0.4 to 2.0 mm, and a closed cell ratio of at least 80%. The resin foam of the present invention has not only light weight, but also exhibits high cushioning performance and excellent mechanical strengths, so that, after fabricated into various sizes by cutting, the resultant resin foam articles can be advantageously used in the fields of cushion packaging materials, floating materials, and heat insulating materials.
Abstract:
A method of cleaning and disinfecting a contact lens comprising immersing a contact lens in a treating solution, applying a direct current to the treating solution with repeatedly reversing a positive electrode and a negative electrode of a pair of electrodes plural times to generate peroxide and raise the temperature of the treating solution so that the interval of time before reversing is different from or equal to the interval of time after reversing to 50.degree. to 100.degree. C., and bringing the contact lens into direct contact with bubbles generated on the electrodes. Since this method is excellent in electrical safety and cleaning and disinfecting effects, contact lenses can be easily cleaned and disinfected.
Abstract:
A process for the preparation of substantially linear, highly polymerized polyesters by polycondensing a glycol ester of an aromatic dicarboxylic acid and/or a low molecular weight condensate thereof, the process being characterized by using as a polycondensation catalyst a preformed titanate compound obtained by reacting a titanic acid ester represented by the formula Ti(OR).sub.4, where R is an alkyl group having from 1 to 5 carbon atoms, with an aromatic acid selected from the group consisting of trimellitic acid, trimellitic anhydride, hemimellitic acid, hemimellitic anhydride or a mixture of one or more thereof at a molar ratio of from about 0.5 to about 2.5 mols of the aromatic acid per 1 mol of the titanic acid ester, to thereby form polyesters which have a high softening point and good color tone. SUBACKGROUND OF THE INVENTION1. Field of the InventionThis invention relates to a process for the preparation of polyesters, in particular, to a process for the preparation of substantially linear, highly polymerized aromatic polyesters having a high softening point and good color tone.2. Description of the Prior ArtPolyesters obtained by reacting an aromatic dicarboxylic acid with a glycol have excellent mechanical, physical and chemical properties, and hence are widely used for fiber, film and other moulding materials. Among such polyesters, polyesters obtained by reacting an acid component consisting mainly of terephthalic acid with a glycol component selected from the group consisting of ethylene glycol, tetramethylene glycol, hexamethylene glycol and cyclohexane-1,4-dimethanol are especially important.In manufacturing the aforesaid polyesters--e.g., polyethylene terephthalate, conventional processing consists of heating the ethylene glycol ester of terephthalic acid and/or a low molecular weight condensate thereof under reduced pressure to effect polycondensation. In carrying out the polycondensation reaction on a commercial scale, catalysts are used to accelerate reaction. The rate of polycondensation and the qualities of the resulting polyester are greatly influenced by the kind(s) of catalyst(s) used.Titanium compounds are known as excellent catalysts for the above-described polycondensation reaction.For example, U.S. Pat. No. 2,822,348, Haslam, issued Feb. 4, 1958, discloses tetraisopropyltitanate, and British patent specification No. 793,111 to I.C.I. Limited, published Apr. 9, 1958, discloses an organic titanate, such as tetramethyl titanate and tetrabutyl titanate as a catalyst in the polycondensation reaction.Although titanium compounds result in a very rapid rate of polycondensation, they also result in the formation of polyesters having a distinctly yellow color and provide polyesters with a decreased softening point. Methods have also been proposed to avoid the disadvantage of yellowness in polyesters formed as described.For example, British Pat. No. 949,085 to I.C.I. Limited, published Feb. 12, 1964, discloses the use of a catalyst system which is the combination of a germanium compound (such as germanium tetraethoxide) and a titanium compound (such as titanium tetraisopropoxide or titanium tetrabutoxide) whereby the disadvantage of yellowness in the resulting polyester is considerably reduced. However, the rate of polycondensation is also reduced as compared to the use of a titanium compound alone. Further, this catalyst system is difficult to store for extended times because titanium compounds, such as titanium tetraisopropoxide or titanium tetrabutoxide, easily lose catalytic activity in the presence of a small amount of water.British Pat. No. 851,061 to Goodyear Tire & Rubber Co., published Oct. 12, 1960, discloses the use of preformed organic titanate compounds formed by the rection of titanic acid esters with polyhydroxy compounds, such as ethylene glycol lor tetramethylene glycol, polycarboxylic compounds, such as maleic acid, phthalic acid and trimesic acid, or hydroxy carboxylic compounds, such as lactic acid and hydroxy benzoic acid. In the preparation of polyesters, these preformed organic titanate compounds accelerate the rate of polymerization and permit the formation of polymers of high molecular weight. However, as a result of experiments performed by the present inventors, it was found that the preformed organic titanate compounds disclosed in this British patent do not fully overcome the disadvantage of yellowness of the obtained polyesters so as to provide a color tone suitable for commercial use. In addition, for example, the preformed organic titanate compound derived from phthalic acid does not sufficiently accelerate the rate of polymerization. Finally, it is difficult to uniformly react trimesic acid (benzene-1,3,5-tricarboxylic acid) with a titanic acid ester.SUMMARY OF THE INVENTIONIt has now been surprisingly found that if a preformed titanate compound obtained by reacting a titanic acid ester with an aromatic tricarboxylic acid having the capacity to form an anhydride is used as a catalyst in the polycondensation of an aromatic dicarboxylic acid with a glycol to form a polyester, the above-mentioned disadvantages of the prior art can be substantially overcome.It is, therefore, one object of the present invention to provide a process for the preparation of substantially linear, highly polymerized polyesters having a high softening point and good color tone.It is another object of the present invention to provide a process for the preparation of polyesters using a polycondensation catalyst which is easily obtained and storable for extended periods of time without degradation.The above-mentioned objects are attained by the process for the preparation of polyesters in accordance with the present invention, which comprises polycondensing a glycol ester of an aromatic dicarboxylic acid and/or a low molecular weight condensate thereof while removing glycol therefrom in the presence of a polycondensation catalyst which is preformed titanate compound obtained by reacting a titanic acid ester represented by the formula Ti(OR).sub.4, where R is an alkyl group having from 1 to 5 carbon atoms, with an aromatic acid selected from the group consisting of trimellitic acid (benzene-1,2,4-tricarboxylic acid), trimellitic anhydride, hemimellitic acid (benzene-1,2,3-tricarboxylic acid), hemimellitic anhydride or a mixture of one or more thereof.
Abstract:
A vapor deposition device (1) performs a vapor deposition treatment to form a luminescent layer (47) having a predetermined pattern on a film formation substrate (40). The vapor deposition device includes: a nozzle (13) having a plurality of injection holes (16) from which vapor deposition particles (17), which constitute the luminescent layer, are injected toward the film formation substrate when the vapor deposition treatment is carried out; and a plurality of control plates (20) provided between the nozzle and the film formation substrate and restricting an incident angle, with respect to the film formation substrate, of the vapor deposition particles injected from the plurality of injection holes. The nozzle includes: a nozzle main body (14b) in a container shape having an opening (14c) on a surface thereof on a film formation substrate side and (ii) a plurality of blocks (15) covering the opening and separated from each other, each of the plurality of blocks having the plurality of injection holes. The above arrangement allows a vapor-deposited film pattern to be formed with high definition.
Abstract:
TFT substrate (10) includes a plurality of pixel regions each including light emitting regions of at least three colors, which light emitting regions include light emitting layers (23R(1), 23G, 23R(2), and 23B), respectively, and two adjacent ones of the light emitting regions are a combination other than a combination of (i) a light emitting region included in a light emitting layer (23G) of a color having a highest current efficiency in a case where the light emitting layers of the light emitting regions of the at least three colors emit light having an identical luminance and (ii) a light emitting region included in a light emitting layer (23B) of a color having a lowest current efficiency in a case where the light emitting layers of the light emitting regions of the at least three colors emit light having an identical luminance.
Abstract:
A control device controls a swing action of flaps of an air conditioning apparatus. The flaps are swung up and down. The control device includes an operation mode determining section, a swing pattern storage area and a control command generator. The operation mode determining section determines at least an air-cooling operation mode and an air-warming operation mode that are operation modes of the air conditioning apparatus. The swing pattern storage area stores a plurality of swing patterns that include information pertaining to the swing action. The control command generator generates a control command of the air conditioning apparatus on the basis of a swing pattern corresponding to the mode determined by the operation mode determining section from among the plurality of swing patterns.
Abstract:
A vapor deposition device includes a vapor deposition source (60) having a plurality of vapor deposition source openings (61) that discharge vapor deposition particles (91), a limiting unit (80) having a plurality of limiting openings (82), and a vapor deposition mask (70) in which a plurality of mask openings (71) are formed only in a plurality of vapor deposition regions (72) where the vapor deposition particles that have passed through a plurality of limiting openings reach. The plurality of vapor deposition regions are arranged along a second direction that is orthogonal to the normal line direction of the substrate (10) and the movement direction of the substrate, with non-vapor deposition regions (73) where the vapor deposition particles do not reach being sandwiched therebetween. Mask openings through which the vapor deposition particles pass are formed at different positions in the movement direction of the substrate from the positions of the non-vapor deposition regions located on a straight line parallel to the second direction, as viewed along the normal line direction of the substrate. Accordingly, it is possible to stably form a vapor deposition coating film in which edge blurring is suppressed at a desired position on a substrate.
Abstract:
A masking film (13) is formed so as to have an opening in a display region (R1) (luminescent region) and a sealing region. Subsequently, luminescent layers (8R, 8G, and 8B) having a stripe pattern are formed. Then, the masking film (13) is peeled off, so that the luminescent layers (8R, 8G, and 8B) patterned with high resolution are provided.
Abstract:
Vapor deposition particles (91) discharged from at least one vapor deposition source opening (61) pass through a plurality of limiting openings (82) of a limiting unit (80) and a plurality of mask openings (71) of a vapor deposition mask (70), and adhere to a substrate (10) that relatively moves along a second direction (10a) so as to form a coating film. The limiting unit includes a plurality of plate members stacked on one another. Accordingly, it is possible to efficiently form a vapor deposition coating film in which edge blurring is suppressed on a large-sized substrate at a low cost.
Abstract:
A vapor deposition device (1) performs a vapor deposition treatment to form a luminescent layer (47) having a predetermined pattern on a film formation substrate (40). The vapor deposition device includes: a nozzle (13) having a plurality of injection holes (16) from which vapor deposition particles (17), which constitute the luminescent layer, are injected toward the film formation substrate when the vapor deposition treatment is carried out; and a plurality of control plates (20) provided between the nozzle and the film formation substrate and restricting an incident angle, with respect to the film formation substrate, of the vapor deposition particles injected from the plurality of injection holes. The nozzle includes: a nozzle main body (14b) in a container shape having an opening (14c) on a surface thereof on a film formation substrate side and (ii) a plurality of blocks (15) covering the opening and separated from each other, each of the plurality of blocks having the plurality of injection holes. The above arrangement allows a vapor-deposited film pattern to be formed with high definition.