Abstract:
PICA test methods are shown that includes forming semiconductor devices having proximal light emitting regions, such that the light emitting regions are grouped into distinct shapes separated by a distance governed by a target resolution size; forming logic circuits to control the semiconductor devices; activating the one or more semiconductor devices by providing an input signal; and suppressing light emissions from one or more of the activated semiconductor devices by providing one or more select signals to the logic circuits.
Abstract:
PICA test methods are shown that includes forming semiconductor devices having proximal light emitting regions, such that the light emitting regions are grouped into distinct shapes separated by a distance governed by a target resolution size; forming logic circuits to control the semiconductor devices; activating the one or more semiconductor devices by providing an input signal; and suppressing light emissions from one or more of the activated semiconductor devices by providing one or more select signals to the logic circuits.
Abstract:
A compact, low-power, asynchronous, resistor-based memory read circuit includes a memory cell having a plurality of consecutive memory states, each of said states corresponding to a respective output voltage. A sense amplifier reads the state of the memory cell. The sense amplifier includes a voltage divider configured to receive the output voltage of the memory cell and to output a settled voltage an amplifier having a voltage threshold between the settled voltages associated with two of said consecutive memory states, configured to discriminate between said two consecutive memory states.
Abstract:
A compact, low-power, asynchronous, resistor-based memory read circuit includes a memory cell having a plurality of consecutive memory states, each of said states corresponding to a respective output voltage. A sense amplifier reads the state of the memory cell. The sense amplifier includes a voltage divider configured to receive the output voltage of the memory cell and to output a settled voltage an amplifier having a voltage threshold between the settled voltages associated with two of said consecutive memory states, configured to discriminate between said two consecutive memory states.
Abstract:
Mechanisms are provided for either power gating or bypassing a voltage regulator. Responsive to receiving an asserted power gate signal to power gate the output voltage of the voltage regulator, at least one of first control circuitry power gates the output voltage of a first circuit or second control circuitry power gates the output voltage of a second circuit such that substantially no voltage to is output by the first circuit to a primary output node. Responsive to receiving an asserted bypass signal to bypass the output voltage of the voltage regulator, at least one of the first control circuitry bypasses the output voltage of the first circuit or the second control circuitry bypasses the output voltage of a second circuit such that substantially the voltage of a voltage source is output by the first circuit to the primary output node.
Abstract:
A high-density deep trench capacitor array with a plurality of leakage sensors and switch devices. Each capacitor array further comprises a plurality of sub-arrays, wherein the leakage in each sub-array is independently controlled by a sensor and switch unit. The leakage sensor comprises a current mirror, a transimpedance amplifier, a voltage comparator, and a timer. If excessive leakage current is detected, the switch unit will automatically disconnect the leaky capacitor module to reduce stand-by power and improve yield. An optional solid-state resistor can be formed on top of the deep trench capacitor array to increase the temperature and speed up the leakage screening process.
Abstract:
Self-synchronizing techniques for checking the accuracy of a pseudorandom bit sequence (PRBS) are provided. The PRBS being checked may be generated by a device (e.g., a device under test) in response to a PRBS received by the device (e.g., from a PRBS generator). In an aspect of the invention, a PRBS checking technique includes the following steps/operations. For a given clock cycle, the presence of an error bit in the PRBS generated by the device is detected. The error bit represents a mismatch between the PRBS input to the device and the PRBS output from the device. Then, propagation of the error bit is prohibited for subsequent clock cycles. The prohibition step/operation may serve to avoid multiple errors being counted for a single error occurrence and/or masking errors in the PRBS output by the device.
Abstract:
Self-synchronizing techniques for checking the accuracy of a pseudorandom bit sequence (PRBS) are provided. The PRBS being checked may be generated by a device (e.g., a device under test) in response to a PRBS received by the device (e.g., from a PRBS generator). In an aspect of the invention, a PRBS checking technique includes the following steps/operations. For a given clock cycle, the presence of an error bit in the PRBS generated by the device is detected. The error bit represents a mismatch between the PRBS input to the device and the PRBS output from the device. Then, propagation of the error bit is prohibited for subsequent clock cycles. The prohibition step/operation may serve to avoid multiple errors being counted for a single error occurrence and/or masking errors in the PRBS output by the device.
Abstract:
Delay elements and delay lines having glitchless operation are disclosed. By way of example, apparatus for delaying an input signal comprises a reference current generator for generating a constant current, wherein the constant current is insensitive to a variation of a power supply voltage, at least one variable bias voltage generator coupled to the reference current generator for generating a set of bias voltages based on the constant current generated by the reference current generator and a digitally programmable delay control input, and at least one delay element coupled to the at least one variable bias voltage generator for delaying the input signal by a constant delay which is determined by the set of bias voltages generated by the at least one variable bias voltage generator.
Abstract:
Delay elements and delay lines having glitchless operation are disclosed. By way of example, apparatus for delaying an input signal comprises a reference current generator for generating a constant current, wherein the constant current is insensitive to a variation of a power supply voltage, at least one variable bias voltage generator coupled to the reference current generator for generating a set of bias voltages based on the constant current generated by the reference current generator and a digitally programmable delay control input, and at least one delay element coupled to the at least one variable bias voltage generator for delaying the input signal by a constant delay which is determined by the set of bias voltages generated by the at least one variable bias voltage generator.