Abstract:
The present invention relates to targeted genome editing in eukaryotic cells or organisms. More particularly, the present invention relates to a composition for cleaving a target DNA in eukaryotic cells or organisms comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof.
Abstract:
The present invention relates to an artificially manipulated unsaturated fatty acid biosynthesis-associated factor and use thereof to increase the content of a specific unsaturated fatty acid of a plant body. More particularly, the present invention relates to a system capable of artificially controlling unsaturated fatty acid biosynthesis and a plant body produced thereby, which include an artificially manipulated unsaturated fatty acid biosynthesis-associated factor to control unsaturated fatty acid biosynthesis and a composition capable of artificially manipulating the factor. In a specific aspect, the present invention relates to artificially manipulated unsaturated fatty acid biosynthesis-associated factors such as FAD2, FAD3, FADE, FAD7 and FAD8 and/or an unsaturated fatty acid biosynthesis controlling system by an expression product thereof.
Abstract:
The present application relates to a novel promoter and a use thereof. In one embodiment of the present application, provided is a nucleic acid construct comprising a novel promoter and a transgene of the present application. At this time, on the nucleic acid construct, the novel promoter of the present application can be operably linked to the transgene.
Abstract:
The present disclosure relates to targeted genome editing in eukaryotic cells or organisms. More particularly, the present disclosure provides compositions for inducing targeted disruption of endogenous genes in eukaryotic cells. The composition may comprise a Cas9/guide RNA complex with a Cas9 protein to which a NLS is linked, and a guide RNA having a crRNA and a tracrRNA. The crRNA may comprise i) a portion to be hybridized with a portion of the tracrRNA, and ii) a portion complementary to a target DNA of the endogenous genes. In some embodiments, the Cas/guide RNA complex may be formed in vitro before being introduced into the eukaryotic cell.
Abstract:
Provided is a platform for expressing a protein of interest by artificially manipulating the liver, and more particularly, to a platform for alleviating or treating a genetic disorder or improving a body function by inducing expression by inserting a transgene (e.g., a therapeutic gene) which can function or be expressed normally, into a high-expression secretory gene, instead of a disease gene which functions or is expressed abnormally. The high-expression secretory gene includes the HP or APOC3 gene. The transgene includes one that is highly expressed using a promoter in a hepatocyte genome and is secretory out of the cell.
Abstract:
Provided is a platform for expressing a protein of interest by artificially manipulating the liver, and more particularly, to a platform for alleviating or treating a genetic disorder or improving a body function by inducing expression by inserting a transgene (e.g., a therapeutic gene) which can function or be expressed normally, into a high-expression secretory gene, instead of a disease gene which functions or is expressed abnormally. The high-expression secretory gene includes the HP or APOC3 gene. The transgene includes one that is highly expressed using a promoter in a hepatocyte genome and is secretory out of the cell.
Abstract:
The present invention relates to an expression control composition for controlling the expression of a duplicate gene or a method using the same. In addition, the present invention relates to a method of treating or improving a disease caused by gene duplication using the expression control composition for controlling the expression of a duplicate gene.
Abstract:
Provided is a platform for expressing a protein of interest by artificially manipulating the liver, and more particularly, to a platform for alleviating or treating a genetic disorder or improving a body function by inducing expression by inserting a transgene (e.g., a therapeutic gene) which can function or be expressed normally, into a high-expression secretory gene, instead of a disease gene which functions or is expressed abnormally. The high-expression secretory gene includes the HP or APOC3 gene. The transgene includes one that is highly expressed using a promoter in a hepatocyte genome and is secretory out of the cell.
Abstract:
The present invention relates to an artificially manipulated unsaturated fatty acid biosynthesis-associated factor and use thereof to increase the content of a specific unsaturated fatty acid of a plant body. More particularly, the present invention relates to a system capable of artificially controlling unsaturated fatty acid biosynthesis and a plant body produced thereby, which include an artificially manipulated unsaturated fatty acid biosynthesis-associated factor to control unsaturated fatty acid biosynthesis and a composition capable of artificially manipulating the factor. In a specific aspect, the present invention relates to artificially manipulated unsaturated fatty acid biosynthesis-associated factors such as FAD2, FAD3, FADE, FAD7 and FAD8 and/or an unsaturated fatty acid biosynthesis controlling system by an expression product thereof.