Abstract:
Provided are a multi-layered polymer package for a film battery and a combined package and current collector. The polymer package for the film battery and the combined package and current collector include a multi-layered polymer film having a construction of at least three layers, which includes a first polymer film, a second polymer film, and a third polymer film, the first, second, and third polymer films being made of different materials. The first polymer film is made of a hydrocarbon compound which is unsubstituted or substituted by a fluorine (F) atom. The second polymer film is made of an amorphous polymer. The third polymer film is made of a polymer having a tensile strength of a predetermined value or more and a tensile modulus of a predetermined value or more. In the combined package and current collector, a conductive layer is disposed on a surface of the multi-layered polymer film.
Abstract:
A method of manufacturing a flexible-film primary battery includes forming a first conductive carbon layer on a surface-treated inner surface of a first pouch film to form a positive electrode collector, and forming a positive electrode layer on the first conductive carbon layer to form a positive electrode plate. A second conductive carbon layer is formed on a surface-treated inner surface of a second pouch film to form a negative electrode collector, and a negative electrode layer is formed on the second conductive carbon layer to form a negative electrode plate. An adhesion/post-injection polymer electrolyte layer is inserted between the positive electrode plate and the negative electrode plate to manufacture a battery assembly. An electrolyte is injected into the polymer electrolyte layer of the battery assembly. The battery assembly is sealed completely to form a primary battery.
Abstract:
An antitumor agent which is not easily excreted from tumor cells and is suitable for a topical treatment. Specifically disclosed is a rotaxane compound with contains a compound represented by chemical formula 1 as the base structure. (In chemical formula 1, m≧2, n≧3, and X represents an anionic molecule or an anionic atom.
Abstract:
Provided is a lithium rechargeable battery including: a cathode plate including a cathode current collector layer and a cathode layer; an anode plate spaced from the cathode plate, the cathode plate including an anode current collector layer and an anode layer; and a polymer electrolyte disposed between the cathode plate and the anode plate, wherein at least one of the cathode layer and the anode layer includes a mixed cathode active material or a mixed anode active material.
Abstract:
Provided are a method of manufacturing a cathode active material for a lithium battery, and a cathode active material obtained by the method. The method includes forming a precursor of a one-dimensional nanocluster manganese dioxide with a chestnut-type morphology, inserting lithium into the formed precursor and synthesizing a one-dimensional nanocluster cathode active material particle with a chestnut morphology, coating a water-soluble polymer on a surface of the cathode active material particle, adsorbing a metal ion to the surface of the cathode active material particle coated with the water-soluble polymer, and sintering the cathode active material particle to obtain the one-dimensional nanocluster cathode active material with a chestnut morphology. The cathode active material manufactured by the above method is a one-dimensional nanocluster with a chestnut-type morphology, which has a uniform-thick metal oxide layer on its surface, thereby ensuring an improved capacity of the cathode active material and an excellent cycle characteristic.
Abstract:
Provided is a method of producing a nanoparticle-filled phase inversion polymer electrolyte. The method includes mixing a nanoparticle inorganic filler and a polymer with a solvent to obtain a slurry; casting the obtained slurry to form a membrane; obtaining an inorganic nanoparticle-filled porous polymer membrane by developing internal pores in the cast membrane using a phase inversion method; and impregnating the inorganic nanoparticle-filled porous polymer membrane with an electrolytic solution. The polymer electrolyte produced using the method can be used in a small lithium secondary battery having a high capacity, thereby providing an excellent battery property.
Abstract:
Provided are a composite polymer electrolyte for a lithium secondary battery that includes a composite polymer matrix structure having a single ion conductor-containing polymer matrix to enhance ionic conductivity and a method of manufacturing the same. The composite polymer electrolyte includes a first polymer matrix made of a first porous polymer with a first pore size; a second polymer matrix made of a single ion conductor, an inorganic material, and a second porous polymer with a second pore size smaller than the first pore size. The second polymer matrix is coated on a surface of the first polymer matrix. The composite polymer matrix structure can increase mechanical properties. The single ion conductor-containing porous polymer matrix of a submicro-scale can enhance ionic conductivity and the charge/discharge cycle stability.
Abstract:
Provided is an insert for a tire, capable of being fastened together with a rim and a tire, the insert including a flow path connecting an upper surface and a lower surface of the insert.
Abstract:
Provided is an insert for a tire, capable of being fastened together with a rim and a tire, the insert including a flow path connecting an upper surface and a lower surface of the insert.