Movable detector for charged particle beam inspection or review
    21.
    发明授权
    Movable detector for charged particle beam inspection or review 有权
    用于带电粒子束检测或检查的可移动检测器

    公开(公告)号:US08624186B2

    公开(公告)日:2014-01-07

    申请号:US12787139

    申请日:2010-05-25

    Abstract: The present invention generally relates to a detection unit of a charged particle imaging system. More particularly, portion of the detection unit can move into or out of the detection system as imaging condition required. With the assistance of a Wein filter (also known as an E×B charged particle analyzer) and a movable detector design, the present invention provides a stereo imaging system that suitable for both low current, high resolution mode and high current, high throughput mode. Merely by way of example, the invention has been applied to a scanning electron beam inspection system. But it would be recognized that the invention could apply to other system using charged particle beam as an observation tool.

    Abstract translation: 本发明一般涉及带电粒子成像系统的检测单元。 更具体地,检测单元的一部分可以作为所需的成像条件移入或移出检测系统。 在Wein滤波器(也称为E×B带电粒子分析仪)和可移动检测器设计的帮助下,本发明提供了一种适用于低电流,高分辨率模式和高电流,高通量模式的立体成像系统 。 仅作为示例,本发明已经应用于扫描电子束检查系统。 但是应当认识到,本发明可以应用于使用带电粒子束作为观测工具的其它系统。

    CARBON BASED ELECTROCATALYSTS FOR FUEL CELLS
    22.
    发明申请
    CARBON BASED ELECTROCATALYSTS FOR FUEL CELLS 审中-公开
    用于燃料电池的基于碳的电解质

    公开(公告)号:US20130164652A1

    公开(公告)日:2013-06-27

    申请号:US13478901

    申请日:2012-05-23

    Abstract: Novel proton exchange membrane fuel cells and direct methanol fuel cells with nanostructured components are configured with higher precious metal utilization rate at the electrodes, higher power density, and lower cost. To form a catalyst, platinum or platinum-ruthenium nanoparticles are deposited onto carbon-based materials, for example, single-walled, dual-walled, multi-walled and cup-stacked carbon nanotubes. The deposition process includes an ethylene glycol reduction method. Aligned arrays of these carbon nanomaterials are prepared by filtering the nanomaterials with ethanol. A membrane electrode assembly is formed by sandwiching the catalyst between a proton exchange membrane and a diffusion layer that form a first electrode. The second electrode may be formed using a conventional catalyst. The several layers of the MEA are hot pressed to form an integrated unit. Proton exchange membrane fuel cells and direct methanol fuel cells are developed by stacking the membrane electrode assemblies in a conventional manner.

    Abstract translation: 新型质子交换膜燃料电池和具有纳米结构组分的直接甲醇燃料电池配置在电极上的贵金属利用率更高,功率密度更高,成本更低。 为了形成催化剂,将铂或铂 - 钌纳米颗粒沉积在碳基材料上,例如单壁,双壁,多壁和杯堆叠碳纳米管。 沉积工艺包括乙二醇还原法。 通过用乙醇过滤纳米材料来制备这些碳纳米材料的对准阵列。 通过将催化剂夹在质子交换膜和形成第一电极的扩散层之间形成膜电极组件。 第二电极可以使用常规的催化剂形成。 MEA的几层被热压形成一个集成的单元。 质子交换膜燃料电池和直接甲醇燃料电池通过以常规方式堆叠膜电极组件来开发。

    APPARATUS OF PLURAL CHARGED PARTICLE BEAMS WITH MULTI-AXIS MAGNETIC LENS

    公开(公告)号:US20120145917A1

    公开(公告)日:2012-06-14

    申请号:US12968221

    申请日:2010-12-14

    Abstract: An apparatus basically uses a simple and compact multi-axis magnetic lens to focus each of a plurality of charged particle beams on sample surface at the same time. In each sub-lens module of the multi-axis magnetic lens, two magnetic rings are respectively inserted into upper and lower holes with non-magnetic radial gap. Each gap size is small enough to keep a sufficient magnetic coupling and large enough to get a sufficient axial symmetry of magnetic scale potential distribution in the space near to its optical axis. This method eliminates the non-axisymmetric transverse field in each sub-lens and the round lens field difference among all sub-lenses at the same time; both exist inherently in a conventional multi-axis magnetic lens. In the apparatus, some additional magnetic shielding measures such as magnetic shielding tubes, plates and house are used to eliminate the non-axisymmetric transverse field on the charged particle path from each charged particle source to the entrance of each sub-lens and from the exit of each sub-lens to the sample surface.

    APPARATUS OF PLURAL CHARGED PARTICLE BEAMS WITH MULTI-AXIS MAGNETIC LENS
    24.
    发明申请
    APPARATUS OF PLURAL CHARGED PARTICLE BEAMS WITH MULTI-AXIS MAGNETIC LENS 有权
    具有多轴磁镜的多重充电粒子的装置

    公开(公告)号:US20120145900A1

    公开(公告)日:2012-06-14

    申请号:US12968201

    申请日:2010-12-14

    Abstract: An apparatus basically uses a simple and compact multi-axis magnetic lens to focus each of a plurality of charged particle beams on sample surface at the same time. In each sub-lens module of the multi-axis magnetic lens, two magnetic rings are respectively inserted into upper and lower holes with non-magnetic radial gap. Each gap size is small enough to keep a sufficient magnetic coupling and large enough to get a sufficient axial symmetry of magnetic scale potential distribution in the space near to its optical axis. This method eliminates the non-axisymmetric transverse field in each sub-lens and the round lens field difference among all sub-lenses at the same time; both exist inherently in a conventional multi-axis magnetic lens. In the apparatus, some additional magnetic shielding measures such as magnetic shielding tubes, plates and house are used to eliminate the non-axisymmetric transverse field on the charged particle path from each charged particle source to the entrance of each sub-lens and from the exit of each sub-lens to the sample surface.

    Abstract translation: 设备基本上使用简单紧凑的多轴磁性透镜来同时将多个带电粒子束中的每一个聚焦在样品表面上。 在多轴磁性透镜的每个子透镜模块中,两个磁环分别插入具有非磁性径向间隙的上孔和下孔中。 每个间隙尺寸足够小以保持足够的磁耦合并且足够大以在靠近其光轴的空间中获得足够的磁标势电位分布的轴向对称性。 该方法同时消除了每个子透镜中的非轴对称横向场和所有子透镜之间的圆透镜场差; 都存在于传统的多轴磁性透镜中。 在该装置中,使用一些额外的磁屏蔽措施,例如磁屏蔽管,板和房子来消除带电粒子路径上从每个带电粒子源到每个子透镜的入口和从出口的入口处的非轴对称横向场 每个子透镜到样品表面。

    Operation stage for wafer edge inspection and review
    25.
    发明授权
    Operation stage for wafer edge inspection and review 失效
    晶圆边缘检查和检查的操作阶段

    公开(公告)号:US07919760B2

    公开(公告)日:2011-04-05

    申请号:US12331336

    申请日:2008-12-09

    Abstract: The present invention relates to an operation stage of a charged particle beam apparatus which is employed in a scanning electron microscope for substrate (wafer) edge and backside defect inspection or defect review. However, it would be recognized that the invention has a much broader range of applicability. A system and method in accordance with the present invention provides an operation stage for substrate edge inspection or review. The inspection region includes top near edge, to bevel, apex, and bottom bevel. The operation stage includes a supporting stand, a z-stage, an X-Y stage, an electrostatic chuck, a pendulum stage and a rotation track. The pendulum stage mount with the electrostatic chuck has the ability to swing from 0° to 180° while performing substrate top bevel, apex and bottom bevel inspection or review. In order to keep the substrate in focus and avoid a large position shift during altering the substrate observation angle by rotation the pendulum stage, one embodiment of the present invention discloses a method such that the rotation axis of the pendulum stage consist of the tangent of upper edge of the substrate to be inspected. The electrostatic chuck of the present invention has a diameter smaller than which of the substrate to be inspected. During the inspection process the substrate on the electrostatic chuck may be rotated about the central axis on the electrostatic chuck to a desired position, this design insures all position on the bevel and apex are able to be inspected.

    Abstract translation: 本发明涉及用于基板(晶片)边缘和背面缺陷检查或缺陷检查的扫描电子显微镜中的带电粒子束装置的操作阶段。 然而,应当认识到,本发明具有更广泛的应用范围。 根据本发明的系统和方法提供了用于衬底边缘检查或审查的操作阶段。 检查区域包括顶部近边缘,斜面,顶点和底部斜面。 操作台包括支撑台,z台,X-Y台,静电卡盘,摆台和旋转轨道。 具有静电卡盘的摆台安装具有从0°摆动到180°的能力,同时执行基板顶部斜面,顶部和底部斜面检查或检查。 为了将基板保持在对焦状态,并且通过旋转摆锤台来改变基板观察角度而避免大的位置偏移,本发明的一个实施例公开了一种方法,使得摆台的旋转轴线由上部的切线 要检查的基板的边缘。 本发明的静电卡盘的直径小于要检查的基板的直径。 在检查过程中,静电卡盘上的基板可以围绕静电卡盘上的中心轴线旋转到期望的位置,该设计确保能够检查斜面上的所有位置和顶点。

    SYSTEM AND METHOD FOR A CHARGED PARTICLE BEAM
    26.
    发明申请
    SYSTEM AND METHOD FOR A CHARGED PARTICLE BEAM 有权
    充电颗粒束的系统和方法

    公开(公告)号:US20100270468A1

    公开(公告)日:2010-10-28

    申请号:US12832127

    申请日:2010-07-08

    Abstract: System and method for charged particle beam. According an embodiment, the present invention provides a charged particle beam apparatus. The apparatus includes a charged particle source for generating a primary charged particle beam. The apparatus also includes at least one condenser lens for pre-focusing the primary charge particle beam. Furthermore, the apparatus includes a compound objective lens for forming the magnetic field and the electrostatic field to focus the primary charged particle beam onto a specimen in the charged particle beam path. The specimen includes a specimen surface. The compound objective lens includes a conical magnetic lens, an immersion magnetic lens, and an electrostatic lens, the conical magnetic lens including an upper pole piece, a shared pole piece being electrically insulated from the upper pole piece, and an excitation coil.

    Abstract translation: 带电粒子束的系统和方法。 根据实施例,本发明提供一种带电粒子束装置。 该装置包括用于产生初级带电粒子束的带电粒子源。 该装置还包括用于预聚焦初级充电粒子束的至少一个聚光透镜。 此外,该装置包括用于形成磁场的复合物镜和静电场,以将初级带电粒子束聚焦到带电粒子束路径中的样本上。 样品包括样品表面。 复合物镜包括锥形磁性透镜,浸没式磁透镜和静电透镜,该圆锥形磁性透镜包括上极片,与上极片电绝缘的共用极片和励磁线圈。

    Platinum and Platinum Based Alloy Nanotubes as Electrocatalysts for Fuel Cells
    27.
    发明申请
    Platinum and Platinum Based Alloy Nanotubes as Electrocatalysts for Fuel Cells 有权
    铂和铂基合金纳米管作为燃料电池的电催化剂

    公开(公告)号:US20090220835A1

    公开(公告)日:2009-09-03

    申请号:US12224197

    申请日:2007-02-24

    Abstract: Electrocatalyst durability has been recently recognized as one of the most important issues that have to be addressed before the commercialization of the proton exchange membrane fuel cells (PEMFCs). The present invention is directed to a new class of cathode catalysts based on supportless platinum nanotubes (PtNTs) and platinum alloy nanotubes, for example, platinum-palladium nanotubes (PtPdNTs), that have remarkable durability and high catalytic activity. Due to their unique combination of dimensions at multiple length scales, the platinum nanotubes of the present invention can provide high platinum surface area due to their nanometer-sized wall thickness, and have the potential to eliminate or alleviate most of the degradation pathways of the commercial carbon supported platinum catalyst (Pt/C) and unsupported platinum-black (PtB) as a result of their micrometer-sized length. The platinum nanotube catalysts of the present invention asymptotically approach a maximum of about twenty percent platinum surface area loss in durability test, while the commercial PtB and Pt/C catalysts lose about fifty-one percent and ninety percent of their initial surface area, respectively. Moreover, the PtNT and PtPdNT catalysts of the present invention show higher mass activity and much higher specific activity than commercial Pt/C and PtB catalysts.

    Abstract translation: 电催化剂耐久性最近被认为是在质子交换膜燃料电池(PEMFC)商业化之前必须解决的最重要的问题之一。 本发明涉及一类新型的基于无支撑铂纳米管(PtNTs)和铂合金纳米管(例如铂 - 钯纳米管(PtPdNTs))的阴极催化剂,其具有显着的耐久性和高催化活性。 由于它们在多个长度尺度上的独特的尺寸组合,本发明的铂纳米管由于其纳米尺寸的壁厚可以提供高的铂表面积,并且具有消除或减轻商业的大部分降解途径的潜力 碳负载的铂催化剂(Pt / C)和无支撑的铂黑(PtB),由于其微米尺寸的长度。 本发明的铂纳米管催化剂在耐久性试验中渐近地接近约百分之二十的铂表面积损失,而商业PtB和Pt / C催化剂分别损失其初始表面积的百分之五十一和百分之九十。 此外,本发明的PtNT和PtPdNT催化剂显示比商业Pt / C和PtB催化剂更高的质量活性和更高的比活性。

    Method for in-line monitoring of via/contact holes etch process based on test structures in semiconductor wafer manufacturing
    28.
    发明授权
    Method for in-line monitoring of via/contact holes etch process based on test structures in semiconductor wafer manufacturing 失效
    基于半导体晶片制造中的测试结构的通孔/接触孔蚀刻工艺的在线监测方法

    公开(公告)号:US06815345B2

    公开(公告)日:2004-11-09

    申请号:US10302809

    申请日:2002-11-21

    CPC classification number: H01L22/34 H01L21/76802 H01L22/24

    Abstract: A method for in-line monitoring of via/contact etching process based on a test structure is described. The test structure is comprised of via/contact holes of different sizes and densities in a layout such that, for a certain process, the microloading or RIE lag induced non-uniform etch rate produce under-etch in some regions and over-etch in others. A scanning electron microscope is used to distinguish these etching differences in voltage contrast images. Image processing and simple calibration convert these voltage contrast images into a “fingerprint” image characterizing the etching process in terms of thickness over-etched or under-etched. Tolerance of shifting or deformation of this image can be set for validating the process uniformity. This image can also be used as a measure to monitor long-term process parameter shifting, as well as wafer-to-wafer or lot-to-lot variations. Advanced process control (APC) can be performed in-line with the guidance of this image so that potential electrical defects are avoided and process yield ramp accelerated.

    Abstract translation: 描述了一种基于测试结构进行通孔/接触蚀刻工艺在线监测的方法。 测试结构由布局不同尺寸和密度的通孔/接触孔组成,使得对于某些工艺,微加载或RIE滞后引起的不均匀蚀刻速率在一些区域产生蚀刻不良并且在其它区域中过度蚀刻 。 使用扫描电子显微镜来区分电压对比图像中的这些蚀刻差异。 图像处理和简单校准将这些电压对比图像转换成表征蚀刻工艺的“指纹”图像,就厚度过蚀刻或欠蚀刻而言。 该图像的偏移或变形的公差可以设置为验证过程的均匀性。 该图像也可用作监视长期过程参数移位以及晶圆到晶圆或批次间变化的度量。 先进的过程控制(APC)可以与该图像的引导一起进行,以便避免潜在的电气缺陷,加速产出斜率。

Patent Agency Ranking