Abstract:
Electronic devices may include displays. A display may include backlight structures that generate light and display layers that generate images using the generated light. An electronic device may include an opaque flexible printed circuit that is wrapped around one or more edges of the backlight structures. The opaque flexible printed circuit may prevent light from the backlight structures from reaching other electronic components or escaping from the device. The opaque flexible printed circuit may include signal lines that communicate signals between a printed circuit board and the display. The opaque flexible printed circuit may be a layer of the printed circuit board that extends from an edge of the printed circuit board. The printed circuit board may include an additional flexible extended printed circuit layer that wraps around a surface of the printed circuit board and forms a portion of a conductive shield over that surface.
Abstract:
An electronic device comprises a housing, a motion sensor configured to sense motion of the housing, and a processor configured to determine an impact geometry based on the motion. A countermeasure system comprises an actuator coupled to an actuated member. The actuated member is operable by the actuator to modify the impact geometry, so that impact energy is redirected away from an impact sensitive component of the electronic device to an energy absorbing component of the electronic device.
Abstract:
Electronic devices may include displays having backlight structures that include optical films. The optical films may help guide light from the backlight structures to display layers that generate display images using the light. The optical films may be attached together at one or more locations. The optical films may be attached to a structural member of the backlight structures. The structural member may be formed along each edge of the optical films and prevent the optical films from sliding within the display. Each optical film may be designed to expand to a common lateral size when the display is operated at a display operating temperature. The optical films may each include an elongated opening such as a slot through which a pin can be placed to partially constrain the movement of the optical films while allowing the optical films to expand or contract under changing thermal conditions in the display.
Abstract:
Electronic devices may include displays. A display may include backlight components such as a light guide plate that distributes light from a light source across the display. The light source may include a plurality of light-emitting diodes mounted on a printed circuit substrate. A portion of the light guide plate may be attached to the printed circuit substrate using adhesive. The adhesive may be a supported adhesive that includes a lining of reflective material. A reflective coating such as a layer of white coverlay may be formed on the surface of the printed circuit substrate and may be configured to reflect light into the light guide plate. The reflective coating may serve as a solder mask. The printed circuit substrate may be attached to a metal display chassis using adhesive. A shim may be used to raise the height of the light source relative to the printed circuit substrate.
Abstract:
The described embodiment relates generally to the manufacture of display assemblies. More particularly the use of alternative back plates for a display assembly is discussed. By using a printed circuit board (PCB) in lieu of a metal backer heat can be evenly spread across the backer by applying a layer of copper configured to normalize a spread of heat across the printed circuit board. The configuration of the copper layer can be configured based on a tested or simulated heat map that accounts for proximate heat producing elements. The PCB can also advantageously act as an interconnection layer between other electrical components disposed within the electronic device.
Abstract:
Structures and methods for providing a liquid adhesive between substrates of a composite structure are described. Methods include providing a liquid adhesive having a thread disposed therein between two substrates of a composite structure. In some embodiments, the thread has a fixed diameter which acts to provide a consistent gap between the two substrates. In some embodiments, the thread is configured to be activated during the assembly process to facilitate curing of the liquid adhesive. In some embodiments the thread is configured to be activated after the composite structure is formed to facilitate separation of the two substrates and disassembly of the composite structure. The thread can be made of a conductive or non-conductive material. In some embodiments, the thread is activated by passing a voltage through the thread to heat the thread. In some embodiments, the thread is activated by passing ultraviolet light through the thread.
Abstract:
Electronic devices may be provided having internal components mounted to a structural glass support member. The structural glass support member may have a planar front surface that forms a front surface of the device. The structural glass support member may have bent portions that form sidewall surfaces of the device. Portions of the structural glass support member may form a transparent display cover layer. A rigid or flexible display may be mounted to the structural glass support member. Additional internal device components may be mounted to the display. A thin enclosure for enclosing the internal components in the device may be mounted to the structural glass support member. The thin enclosure may be mounted to the structural glass support member using a peripheral member. The thin enclosure may be free from attachments to internal components or may be adhesively bonded to one or more internal components.
Abstract:
Electronic devices may be provided having internal components mounted to a structural glass support member. The structural glass support member may have a planar front surface that forms a front surface of the device. The structural glass support member may have bent portions that form sidewall surfaces of the device. Portions of the structural glass support member may form a transparent display cover layer. A rigid or flexible display may be mounted to the structural glass support member. Additional internal device components may be mounted to the display. A thin enclosure for enclosing the internal components in the device may be mounted to the structural glass support member. The thin enclosure may be mounted to the structural glass support member using a peripheral member. The thin enclosure may be free from attachments to internal components or may be adhesively bonded to one or more internal components.
Abstract:
Disclosed herein are methods and systems for providing haptic output on an electronic device. In some embodiments, the electronic device includes an actuator configured to move in a first direction. The electronic device also includes a substrate coupled to the actuator. When the actuator moves in the first direction, the substrate or a portion of the substrate, by virtue of being coupled to the actuator, moves in a second direction. In some implementations, the movement of the substrate is perpendicular to the movement of the actuator.
Abstract:
Electronic devices may be provided having internal components mounted to a structural glass support member. The structural glass support member may have a planar front surface that forms a front surface of the device. The structural glass support member may have bent portions that form sidewall surfaces of the device. Portions of the structural glass support member may form a transparent display cover layer. A rigid or flexible display may be mounted to the structural glass support member. Additional internal device components may be mounted to the display. A thin enclosure for enclosing the internal components in the device may be mounted to the structural glass support member. The thin enclosure may be mounted to the structural glass support member using a peripheral member. The thin enclosure may be free from attachments to internal components or may be adhesively bonded to one or more internal components.