Abstract:
The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
Abstract:
The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof are provided. Embodiments include a silicon-doped anode material for a lithium-ion battery, where the anode material includes beads of a polyimide-derived carbon aerogel. The carbon aerogel may further include silicon particles and accommodates expansion of the silicon particles during lithiation. The anode material provides optimal properties for use within the lithium-ion battery.
Abstract:
The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
Abstract:
Aerogel-based components and systems for electric vehicle thermal management are provided. Exemplary embodiments include a heat control member. The heat control member can include reinforced aerogel compositions that are durable and easy to handle, have favorable performance for use as heat control members and thermal barriers for batteries, have favorable insulation properties, and have favorable reaction to fire, combustion and flame-resistance properties. Also provided are methods of preparing or manufacturing such reinforced aerogel compositions. In certain embodiments, the composition has a silica-based aerogel framework reinforced with a fiber and including one or more opacifying additives.
Abstract:
The present disclosure discusses a system with a nanoporous carbon material with a pore structure and lithium metal disposed adjacent to the nanoporous carbon material. The present disclosure discussion includes an electrical energy storage device including at least one anode, at least one cathode, and an electrolyte comprising lithium ions, wherein the electrical energy storage device has a first cycle efficiency of at least 50% and a reversible capacity of at least 150 mAh/g.
Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof. Embodiments include a sulfur-doped cathode material within a lithium-sulfur battery, where the cathode is collector-less and is formed of a binder-free, monolithic, polyimide-derived carbon aerogel. The carbon aerogel includes pores that surround elemental sulfur and accommodate expansion of the sulfur during conversion to lithium sulfide. The cathode and underlying carbon aerogel provide optimal properties for use within the lithium-sulfur battery.
Abstract:
The present disclosure is directed to methods of forming polyamic acid and polyimide gels in water. The resulting polyamic acid and polyimide gels may be converted to aerogels, which may further be converted to carbon aerogels. Such carbon aerogels have the same physical properties as carbon aerogels prepared from polyimide aerogels obtained according to conventional methods, i.e., organic solvent-based. The disclosed methods are advantageous in reducing or avoiding costs associated with use and disposal of potentially toxic solvents and byproducts. Gel materials prepared according to the disclosed methods are suitable for use in environments involving electrochemical reactions, for example as an electrode material within a lithium-ion battery.
Abstract:
Components and systems to manage thermal runaway issues in electric vehicle batteries are provided. Exemplary embodiments include a heat control member. The heat control member can include reinforced aerogel compositions that are durable and easy to handle, have favorable performance for use as heat control members and thermal barriers for batteries, have favorable insulation properties, and have favorable reaction to fire, combustion and flame-resistance properties. Also provided are methods of preparing or manufacturing such reinforced aerogel compositions. In certain embodiments, the composition has a silica-based aerogel framework reinforced with a fiber and including one or more opacifying additives.
Abstract:
Materials and methods for manufacturing electronic devices and semiconductor components using low dielectric materials comprising polyimide based aerogels are described. Additional methods for manipulating the properties of the dielectric materials and affecting the overall dielectric property of the system are also provided.