摘要:
Compounds of formula (I) or their salts or esters: [wherein R1 is alkyl or haloalkyl; R2 and R3 each represents hydrogen or aliphatic acyl; X is hydroxy, halogen, alkoxy, or a group of formula RaO—, where Ra is aliphatic acyl; Y is a group of formula RbRcN— or RbRcN—O—, where Rb and Rc each is hydrogen or alkyl; and Z is oxygen or sulfur] have excellent sialidase inhibitory activity and are therefore useful for the treatment and prevention of influenza and other viral diseases where the replication of the virus is susceptible to sialidase inhibitors.
摘要:
Compounds of formula (I) or their salts or esters: have excellent sialidase inhibitory activity and are therefore useful for the treatment and prevention of influenza and other viral diseases where the replication of the virus is susceptible to sialidase inhibitors.
摘要:
Provided are a compound having an excellent hypoglycemic action, or a pharmaceutically acceptable salt thereof, and a pharmaceutical composition having an excellent therapeutic effect and/or prophylactic effect on type 1 diabetes, type 2 diabetes, and the like, which cause an increase in the blood sugar level due to abnormal sugar metabolism. A compound represented by general formula (I), or a pharmaceutically acceptable salt thereof, is disclosed.
摘要:
A magnetic memory cell 1 is provided with a magnetic recording layer 10 which is a ferromagnetic layer and a pinned layer 30 connected with the magnetic recording layer 10 through a non-magnetic layer 20. The magnetic recording layer 10 has a magnetization inversion region 13, a first magnetization fixed region 11 and a second magnetization fixed region 12. The magnetization inversion region 13 has a magnetization whose orientation is invertible and overlaps the pinned layer 30. The first magnetization fixed region 11 is connected with a first boundary B1 in the magnetization inversion region 13 and a magnetization orientation is fixed on a first direction. The second magnetization fixed region 12 is connected with a second boundary B2 in magnetization inversion region 13 and a magnetization orientation is fixed on a second direction. The first direction and the second direction are opposite to each other.
摘要:
Provided is an optical scanning device capable of solving the problem of low driving efficiency. A pair of coupling parts 12 join both ends of movable mirror part 11 having a reflective plane that reflects light to respective supporting parts 13. Each coupling part 12 has magnet part 21 having a permanent magnet, first spring part 22 that couples magnet part 21 to supporting part 13 in an oscillatable manner, and a second spring part that couples movable mirror part 11 to magnet part 21 in an oscillatable manner. Driver 14 generates magnetic fields acting on magnet part 21 to oscillate magnetic part 21 and thereby oscillate movable mirror part 11.
摘要:
An MRAM of a spin transfer type is provided with a memory cell 10 and a word driver 30. The memory cell 10 has a magnetic resistance element 1 and a selection transistor TR having one of source/drain electrodes which is connected with one end of the magnetic resistance element 1. The word driver 30 drives a word line WL connected with a gate electrode of the selection transistor TR. The word driver 30 changes a drive voltage of the word line WL according to the write data DW to be written in the magnetic resistance element 1.
摘要:
An operation method of a MRAM of the present invention stores in memory arrays, error correction codes, each of which comprises of symbols, each of which comprises bits, and to which an error correction is possible in units of symbols. In the operation method, the symbols are read by using the reference cells different from each other. Moreover, when a correctable error is detected in a read data of the error correction code from data cells corresponding to an input address, (A) a data in the data cell corresponding to an error bit is corrected, for a first error symbol as an error pattern of one bit, and (B) a data in the reference cell that is used to read a second error symbol is corrected for a second error symbol as en error pattern of the bits.
摘要:
An MRAM having a first cell array group (2-0) and a second cell array group (2-1) containing a plurality of cell arrays (21) is used. Each of the first cell array group (2-0) and the second cell array group (2-1) includes a first current source unit for supplying a first write current IWBL to a bit line WBL of the cell array (21) and a first current waveform shaping unit having a first capacitor requiring precharge and shaping the waveform of the first write current IWBL. When the cell array (21) performs write into a magnetic memory (24), the first current waveform shaping unit of the first cell array group (2-0) and the first current waveform shaping unit of the second cell array group (2-1) charges and discharges electric charge accumulated in the first capacitor to wiring toward the bit line WBL at different periods from each other.
摘要:
For achieving a fluidic device, being able to be made small in sizes, comprising a fluid inflow opening 1, a connector duct 2, and a fluid jet nozzle, wherein the connector duct 2 is constructed with curves, and is further constructed with two (2) pieces of flow passages, being symmetric on both sides. Constructing the connector duct with the curves reduces resistance of fluid within the duct, and further dividing the connector duct into two (2) parts in both side enhances the flows at confluent point in the duct (increase of the flow velocity).
摘要:
An MRAM has a plurality of bit lines, a reference bit line, a plurality of memory cells and reference cells and a read section. The memory cells are provided along the bit lines and the reference cells along the reference bit line. The memory cell and reference cell have a tunneling magnetic resistance and a reference tunneling magnetic resistance, each of which has a spontaneous magnetization whose direction is reversed in accordance with data stored therein. The read section has a first resistance section which contains a ninth terminal connected with a bit line and a tenth terminal connected with the first power supply, a second resistance section which contains an eleventh terminal connected with the reference bit line and a twelfth terminal connected with the first power supply, and a comparing section which compares a sense voltage on the ninth terminal and a reference voltage of the eleventh terminal.