Abstract:
A battery includes one or more rechargeable cells, a wireless power coil, a battery charger circuit, and may further include an RFID module. The wireless power coil is operable to generate an AC voltage from a wireless power electromagnetic field. The battery charger circuit is operable to generate a battery charge voltage from the AC voltage in accordance with a battery charge control signal and, when enabled, to charge the one or more rechargeable cells via the battery charge voltage. If the battery further includes the RFID module, it is operable to generate the battery charge control signal and communicate with a wireless power transmitter device.
Abstract:
A battery includes one or more rechargeable cells, a wireless power coil, a battery charger circuit, and may further include an RFID module. The wireless power coil is operable to generate an AC voltage from a wireless power electromagnetic field. The battery charger circuit is operable to generate a battery charge voltage from the AC voltage in accordance with a battery charge control signal and, when enabled, to charge the one or more rechargeable cells via the battery charge voltage. If the battery further includes the RFID module, it is operable to generate the battery charge control signal and communicate with a wireless power transmitter device.
Abstract:
A wireless power system includes a wireless power transmit and receive units. The wireless power transmit unit includes a wireless power transmit circuit that generates a wireless power magnetic field and a transmit unit transceiver that transceives a communication regarding the wireless power magnetic field in accordance with a control channel protocol. The wireless power receive unit includes a wireless power receive circuit, a transceiver, and a processing module. The wireless power receive circuit converts the wireless power magnetic field into a voltage. The receive unit processing module is operable to: identify the control channel protocol; determine whether the receive unit transceiver is capable of communication using the control channel protocol; and, when the receive unit transceiver is capable of communication using the control channel protocol, coordinate configuration of the receive unit transceiver to transceive the communication regarding the wireless power magnetic field via the control channel.
Abstract:
A first access point located in a first cell may be coupled to a second access point located in a second cell. Service may be initially provided to an access device by the first access point cell. The access device may subsequently be serviced by a second access point whenever a signal for the access device falls below a specified threshold level. The second cell may be a neighboring cell, which may be located adjacent to the first cell. A first signal may be transmitted from a first beamforming antenna coupled to the first access point, to the second access point via an uplink channel. Similarly, a second signal may be transmitted from a second beamforming antenna coupled to the second access point, to the first access point via a downlink channel. The uplink and downlink channels may be a backhaul channel.
Abstract:
A method and apparatus supporting the handling of calls using multimedia information are disclosed. Multimedia information exchanged by an associated access device and a gateway. The access device may request for the multimedia information to be recorded during a call. The gateway may store the received multimedia information locally or may communicate the multimedia information to storage.
Abstract:
A device includes a primary cue module, a secondary cue module, a processing module, and a wireless transceiver. The primary cue module obtains primary data regarding an object of interest and the secondary cue module obtains secondary data regarding the object of interest. The processing module is operably coupled to: convert the primary data and the secondary data into an outbound message; convert the outbound message into an outbound symbol stream; and convert an inbound symbol stream into an inbound message, wherein the inbound message includes information regarding the object of interest. The wireless transceiver is operably coupled to: convert the outbound symbol stream into an outbound wireless signal; and convert an inbound wireless signal into the inbound symbol stream.
Abstract:
A mobile communication device includes a motion sensor for generating motion signals in response to motion of the mobile communication device. A motion data generation module generates motion data based on the motion signals. At least one transceiver sends the motion data to a game device in a gaming mode of operation and transceives wireless telephony data with a wireless telephony network in a telephony mode of operation.
Abstract:
A method and system for the consumption of simulcasted or multicasted multimedia information via a wireless personal or local area network by a broadband access gateway, is disclosed. A user of an access device such as, for example, a mobile multimedia handset may engage in a call served by a wireless wide area network, and may consume components of multimedia information via the wireless wide area network. Additional components of the multimedia information may be provided to the user via a second communication path, based upon user-defined parameters in a user profile. Selected components or all of the multimedia information may be communicated to a broadband access gateway, where it may be cached, or simulcast to a plurality of access devices in a wired fashion, or wirelessly via a personal area and/or wireless local area network.
Abstract:
A monoscopic camera comprising one or more image sensors and a depth sensor may generate video based on two-dimensional image data captured via the one or more image sensors and corresponding depth information captured via the depth sensor. The camera may process corresponding audio for the generated video based on the captured depth information. The audio processing may comprise mitigating noise in the corresponding audio, enhancing voice quality in the corresponding audio, and/or enhancing audio quality of the corresponding audio. The camera may be operable to determine, based on the captured depth information, one or more sound paths between a source of the corresponding audio and a microphone utilized to capture the corresponding audio emanating from the source. The processing of the audio may comprise removing portions of the captured audio arriving at the microphone via one or more reflection paths.
Abstract:
A wireless power system can include wireless power receive circuitry for generating power from a wireless signal, and a wireless power transceiver for communicating with a wireless power transmission unit. The wireless power system can transition from an idle state to different power management states depending on whether or not communication has been established with the wireless power transmission unit. Different modules can be activated, different supply voltages, and different clock signal rates can be used in different power management states.