摘要:
A method of forming a NAND-type flash memory device including forming a stacked gate flash memory structure (346) containing an interpoly dielectric layer (322) for one or more flash memory cells in a core region (305). The method also includes forming a select gate transistor structure (348) having a first gate oxide (322) formed of the interpoly dielectric material and a gate conductor (338) overlying the first gate oxide (322) in the core region (305). A NAND-type flash memory device includes a core region (305) comprising a stacked gate flash memory cell structure (346) and a select gate transistor (348) and a periphery region (314, 315) comprising a low voltage transistor (342) and a high voltage transistor (350). The stacked gate flash memory cell structure (346) includes a tunnel oxide layer (308), a poly1 layer (312) overlying the tunnel oxide layer (308), an interpoly dielectric layer (322) formed of an insulating material overlying the poly1 layer (312) and a poly2 layer (338) overlying the interpoly dielectric layer (322). In addition, the select gate transistor structure (348) includes a gate insulator (322) formed of the insulating material and a poly2 layer (338) overlying the gate insulator (322).
摘要:
A system and method detecting the presence of polysilicon stringers on a memory array using a polysilicon stringer monitor. The polysilicon stringer monitor includes a continuous type-2 layer of polysilicon forming a first row and a second row across the active region and covering the active region in-between the first and second rows. The polysilicon stringer monitor further includes a continuous type-1 layer of polysilicon extending under the first row, wherein the type-1 layer also covers the active area in-between the first and second rows as well as covers the active area under the second row.
摘要:
In a first aspect of the present invention, a semiconductor device is disclosed. The semiconductor device comprises at least two gate stacks, each gate stack having two sides and oxide spacers on each of the two sides of each of the at least two gate stacks, wherein at least one of the oxide spacers is triangular shaped. In a second aspect of the present invention, a method and system for processing a semiconductor device is disclosed. The method and system for processing a semiconductor comprise forming at least two gate stacks over a semiconductor substrate, depositing an oxide layer over the at least two gate stacks, and etching the oxide layer to form at least one oxide spacer in between the at least two gate stacks, wherein the at least one oxide spacer is triangular shape. Through the use the present invention, the voids that are created in the semiconductor device during conventional semiconductor processing are eliminated. This is accomplished by creating oxide spacers having a triangular shape when etching the oxide layer to form the oxide spacer. By creating a triangular shaped oxide spacer, subsequent layers of material can be deposited over the oxide spacer without creating voids in the semiconductor device. Accordingly, as a result of the use of the present invention, the oxide spacers are strengthened, which increases the reliability of the semiconductor device.
摘要:
A magnetic transducing head having an air bearing surface has a bottom shield, a shared pole, a read element, a substantially planar composite top pole; and a conductive coil. The read element is positioned between the bottom shield and the shared pole. The top pole is formed of high magnetic moment pole tip portion and a high resistivity yoke portion. The pole tip portion of the top pole is substantially coplanar with the yoke portion of the top pole. The pole tip portion of the top pole is separated from the shared pole at the air bearing surface by a write gap, while the yoke portion of the top pole is in contact with the shared pole opposite the air bearing surface. At least a portion of the conductive coil is positioned between the shared pole and the top pole.
摘要:
The present invention provides a method for monitoring for a second gate over etch in a flash memory device. The method includes providing at least one select transistor stack structure in the core area of the substrate and at least one monitor structure in the monitor area of the substrate; determining a thickness of a select gate layer of the at least one monitor structure; and determining if a second gate over etch occurred upon the thickness of the select gate layer of the at least one monitor structure. The select gate layer of the monitor structure is the same select gate layer of the select transistor stack structure. The select gate thickness of the select transistor stack structure may be determined by measuring the thickness at the monitor structure. This measurement is possible at the monitor area because the monitor structures are placed far enough apart to support measuring instruments. With the method in accordance with the present invention, a second gate over etch and its extent can be monitored without destroying the device. The method requires less time than conventional monitoring methods and is also less costly.
摘要:
A process which includes forming trench structures (28) in a substrate (12) as part of both the STI isolation structure and the LOCOS/STI isolation structure. Thereafter, a field oxide (34a) is formed which simultaneously forms a portion of the STI isolation structure and a portion of the LOCOS/STI isolation structure. Consequently, three different isolation structures may be formed without requiring a substantial increase in the complexity or number of processing steps.
摘要:
The source end of a NAND string in a scalable, lower voltage flash memory device is biased during a memory read operation to prevent problems associated with punchthrough. Due to the biasing, the channel length of the floating gate transistors in the flash memory device can be shortened, and the pass voltage employed during the memory read operation can be lowered.
摘要:
An intermediate implant step is performed to optimize the performance of the transistors in the peripheral portion of a floating gate type memory integrated circuit. The polysilicon layer (Poly 1) that forms the floating gate in the respective floating gate type memory devices prevents penetration of the optimizing implant into the core region in which the floating gate memory devices are formed. This permits the optimization implant to be performed without the need for an additional mask, thus reducing costs and production time.
摘要:
This invention describes methods for producing gate oxide regions in periphery regions of semiconductor chips, wherein the gate oxide regions have improved electrical properties. The methods involve the deposition of a barrier layer over the periphery of the semiconductor chip to prevent the introduction of contaminating nitrogen atoms into the periphery during a nitridation step in the core region of the semiconductor chip. By preventing the contamination of the gate areas of the periphery, the gate oxide regions so produced have increased breakdown voltages and increased reliability. This invention describes methods for etching the barrier layers used to protect the periphery from tunnel oxide nitridation. Semiconductor devices made with the methods of this invention have longer expected lifetimes and can be manufactured with higher device density.
摘要:
A method for determining a reliable gate oxide thickness for a transistor involves subjecting test transistors to an alternating current (AC) voltage until the test transistors break down. The breakdown times of the test transistors are measured and correlated with the corresponding gate oxide thickness of the test transistor to form a reliability model of the transistor. The reliable gate oxide thickness is determined by extrapolating the reliability model out to a predetermined period of time for which reliability is desired, for example, ten years.