Abstract:
A blood pump includes an impeller assembly housing; and an impeller assembly disposed within the impeller assembly housing. The impeller assembly includes an impeller having a main body, at least one impeller blade extending outwardly therefrom, and a skirt disposed around at least a portion of the main body. At least a portion of the at least one impeller blade is disposed between the main body and an inner surface of the skirt.
Abstract:
A system for charging an onboard battery of a medical device prior to use of the medical device may include a package configured to accommodate the medical device therein. A power source may be disposed relative to the package and may be capable of charging the onboard battery of the medical device prior to use of the medical device. The system may be capable of being subjected to a sterilization process with the power source disposed within the second cavity. In some instances, the power source is uncharged during sterilization. In some cases, the power source is encapsulated or otherwise sealed during sterilization.
Abstract:
A heart valve repair implant may include a first implant section having a first axial core, and a plurality of spines extending radially outward from the first axial core in an expanded configuration; a second implant section having a second axial core configured to slide over the first axial core, and a mesh portion configured to extend radially outward from the second axial core in an expanded configuration; a third implant section having a central tensioning element extending through the first axial core, and a plurality of arms extending radially outward from the central tensioning element and configured to extend axially between the plurality of spines and through the mesh portion; and a securement element disposed on the central tensioning element.
Abstract:
An atherectomy device is disclosed herein. The atherectomy device includes a first drive shaft, a second drive shaft, a handle assembly, and a cutting member. The first drive shaft extends distally from the handle assembly and includes the cutting member mounted on a distal end region of the first drive shaft. The second drive shaft extends distally from the handle assembly to a distal end of the second drive shaft such that both the first and the second drive shafts are rotatable relative to the handle assembly, and the first drive shaft is rotatable independent of the second drive shaft.
Abstract:
According to an aspect, an inflatable penile prosthesis includes a fluid reservoir configured to hold fluid, an inflatable member, and a pump assembly configured to transfer the fluid from the fluid reservoir to the inflatable member during an inflation cycle. The pump assembly includes a first pump configured to inject the fluid into the inflatable member according to a first flow rate, and a second pump configured to inject fluid into the inflatable member according to a second flow rate, where the second flow rate is less than the first flow rate.
Abstract:
A device for sealing a puncture opening may include a base frame having a delivery configuration wherein the base frame is retracted to have a relatively smaller overall profile, and a deployed configuration wherein the base frame is extended to have a relatively larger overall profile. The base frame is sized to engage an interior surface of the blood vessel wall in the deployed configuration. A sealing section is coupled to the base frame, the sealing section having an initial configuration wherein the sealing section permits fluid flow, and a barrier configuration wherein the sealing section prevents fluid flow. The sealing section in the barrier configuration is sized to block fluid flow through the puncture opening when the base frame is in the deployed configuration.
Abstract:
Medical devices and methods for drying medical devices are disclosed. An example method for drying a medical device may include disposing a medical device within a drying apparatus. The drying apparatus may include a variable frequency microwave heating device. The medical device may include a substrate, the substrate including an active pharmaceutical ingredient and a solvent. The method may also include heating the medical device with the drying apparatus. Heating may evaporate at least a portion of the solvent.
Abstract:
Provided are devices, systems and methods of selectively controlling air flow into one or more section of a patient's lungs. In particular, the devices may be valve devices having an inner lumen configured to transition between a first diameter and a second diameter smaller than the first diameter to control the airflow through the valve.
Abstract:
A method for manufacturing a tubular medical device having a micropatterned inner surface is disclosed. A glass tube having an optical mask on an outer surface thereof may be placed within a lumen of a tubular medical device, wherein the optical mask forms a pattern of shapes. An ultraviolet light source may be advanced within a lumen of the glass tube. The inner surface, including a photoresist coating, of the tubular medical device may be illuminated with ultraviolet light through the glass tube. The optical mask may block ultraviolet light from passing through portions of the glass tube. The inner surface of the tubular medical device may be etched to create a plurality of protrusions.
Abstract:
A medical device includes an outer shell defining a cavity, wherein the shell is movable between a deformed and unstressed state, a magnet disposed within the cavity, and a filler material carried within the cavity conforming to the interior shape of the shell in the unstressed state and being capable of holding its shape in the deformed state. The filler material converts from the deformed state to the unstressed state at a temperature not greater than human body temperature.