Abstract:
In one embodiment, an apparatus includes an enclosure configured for connection to a printed circuit board, a substrate within the enclosure, a plurality of components mounted on the substrate, a fluid inlet connector, a fluid outlet connector, and a plurality of flow channels within the enclosure, at least one of the components disposed in each the flow channels and segregated from other components in another of the flow channels. The enclosure is configured for immersion cooling of the components.
Abstract:
Presented herein is a plurality of arrangements of cold plates having interior chambers. The interior chamber includes a plurality of fins with a first fin zone and a second fin zone. The cold plate further includes a first fluid inlet and a first fluid outlet. The cold plates can be connected such that each cold plate allows unidirectional flow or counter flow configurations. Unidirectional flow or counter flow cold plates can be arranged in rows and in combination of rows.
Abstract:
A network communications device includes a chassis, a plurality of modules removably inserted into a plurality of slots in the chassis. A coolant is delivered to a first group of the plurality of modules with a first flow control valve in a first cooling loop and the coolant is delivered to a second group of the plurality of modules with a second flow control valve in a second cooling loop. The network communication device further includes a plurality of sensors for monitoring a temperature in the first cooling loop and the second cooling loop and a control system for controlling delivery of the coolant to the first group and the second group, where the control system controls transmitting a signal to one of the first flow control valve and the second flow control valve to modify a flow of the coolant.
Abstract:
In an egress processing method, an egress frame is received. The egress frame includes an outer Ethernet frame, an Internet Protocol (IP) header, a layer 3 (L3) encapsulation identifying a layer 2 (L2)-over-L3 tunnel protocol, and an inner Ethernet frame with a payload. The outer Ethernet frame, the IP header, and the inner Ethernet frame, and the L3 encapsulation are parsed. Based on results of the parsing, a media access control security (MACsec) policy that defines how to protect the inner Ethernet frame is determined, and the inner Ethernet frame is protected according to the MACsec policy, while leaving unprotected the outer Ethernet frame, the IP header, and the L3 encapsulation, to produce a partly protected output egress frame. The partly protected output egress frame is transmitted to the peer network device over a public wide area network.
Abstract:
Techniques are provided to append packet handling information “in the clear” ahead of security related information in a packet to be routed over a network to optimize wide area network deployments of security-configured equipment. In one form, at a network device that performs connectionless secure communication and network routing of packets, data is received from a source device to be sent through a network to a destination device. Packet handling information is inserted in a packet that is to be used to transport the data. The packet handling information is configured to enable controlled handling of the packet in the network and is inserted in an unprotected portion of the packet. Encrypted payload data is generated from the data received from the source device. The encrypted payload data and security information are inserted in a protected portion of the packet and the packet is sent to the network.
Abstract:
An accurate non-Data Over Cable Service Interface Specification (non-DOCSIS) clock signal is generated at the downstream output of a DOCSIS network. In one example method, a downstream DOCSIS Timing Protocol (DTP) client in the DOCSIS network is frequency synchronized to an upstream DTP server in the DOCSIS network. DOCSIS timing information, along with one or more timing correction factors received at the DTP client, is used to time synchronize the DTP client to the DTP server. Based on the time and frequency synchronization between the DTP server and the DTP client, the clock signal is generated at the output of the DTP client in accordance with the non-DOCSIS timing protocol.
Abstract:
In one embodiment, an apparatus includes an enclosure configured for connection to a printed circuit board, a substrate within the enclosure, a plurality of components mounted on the substrate, a fluid inlet connector, a fluid outlet connector, and a plurality of flow channels within the enclosure, at least one of the components disposed in each the flow channels and segregated from other components in another of the flow channels. The enclosure is configured for immersion cooling of the components.
Abstract:
Presented herein is a plurality of arrangements of cold plates having interior chambers. The interior chamber includes a plurality of fins with a first fin zone and a second fin zone. The cold plate further includes a first fluid inlet and a first fluid outlet. The cold plates can be connected such that each cold plate allows unidirectional flow or counter flow configurations. Unidirectional flow or counter flow cold plates can be arranged in rows and in combination of rows.
Abstract:
Presented herein are optical module cage designs and heatsink configurations for improved air cooling of pluggable optical modules disposed within the optical module cages. The designs and configurations presented herein facilitate efficient air cooling of higher power pluggable optical modules by enhancing airflow through the optical module cages, increasing contact between the optical modules and the heatsinks, and/or increasing the heatsink dissipation surface area.
Abstract:
In one embodiment, an apparatus includes an enclosure configured for connection to a printed circuit board, a substrate within the enclosure, a plurality of components mounted on the substrate, a fluid inlet connector, a fluid outlet connector, and a plurality of flow channels within the enclosure, at least one of the components disposed in each the flow channels and segregated from other components in another of the flow channels. The enclosure is configured for immersion cooling of the components.