Abstract:
Telecommunication systems using multiple Nyquist zone operations are provided. In one aspect, a telecommunication system can include a first section and a second section. The first section can receive signals from at least one transmitting base station or transmitting terminal device. The received signals have frequencies in multiple frequency bands. The first section can also sample the received signals such that the received signals are aliased. The first section can also combine the aliased signals from the frequency bands into a combined frequency band in a common Nyquist zone. The second section can extract signals from the combined frequency band. The extracted signals are to be transmitted at frequencies in a frequency band from a Nyquist zone that is different than the common Nyquist zone. The second section can also transmit the extracted signals to at least one receiving base station or receiving terminal device. Other embodiments are disclosed.
Abstract:
Certain features relate to improving the link-fault tolerance in a distributed antenna system (DAS) by utilizing a series of synchronous communication frames. A receiving remote unit or a head-end unit in the DAS can predict the start of incoming communication frames based on frame information extracted from previously received communication frames. For example, a remote unit can be configured to receive one or more communication frames, each of the one or more communication frames including a start-of-frame field. After a period of time corresponding to the frame repetition rate, the remote unit can search for an additional start-of-frame field, indicating the receipt of the next communication frame. The remote unit can extract the payload data from the next communication frame based on the predicted value for the additional start-of-frame field.
Abstract:
A remote unit of a distributed antenna system includes: a transceiver configured to communicate RF signals between a master unit of the distributed antenna system and a terminal device, and receive downlink RF signals from a base station; and signal processing circuitry configured to provide downlink signals to the master unit. The remote unit receives instructions from a host unit of the distributed antenna system to establish a communication link with the base station in response to detecting a malfunction with respect to an additional communication link between the master unit and an additional base station.
Abstract:
One embodiment is directed to a system comprising a first signal path configured to receive a first uplink signal and a second signal path configured to receive a second uplink signal. The system further comprises a correlator communicatively coupled to the first signal path and the second signal path and configured to produce correlation data indicative of any correlation between the first uplink signal and the second uplink signal. The system further comprises a comparator communicatively coupled to the correlator and configured to cause, based on receiving the correlation data, a first variable gain device in the first signal path to adjust a gain of the first uplink signal and a second variable gain device in the second signal path to adjust a gain of the second uplink signal. Other embodiments are disclosed.
Abstract:
Systems and methods for developing a configuration plan for communication transport links of a distributed antenna system are provided. The distributed antenna system includes a unit communicating with remote antenna units over the communication transport links. The unit receives signals from base stations. Characteristics of each of the signals are determined. The characteristics include, for each signal, a frequency occupancy, a digital bandwidth, and a coverage zone to which to provide the signal. The frequency occupancy includes the minimum frequency component and the maximum frequency component of the signal. The digital bandwidth is a bandwidth for communicating the signal via the communication transport links. A hardware capability of the distributed antenna system, such as a respective available bandwidth for each communication transport link, is also determined. The configuration plan for transporting the digital representations of the signals is determined based on the hardware capability and the characteristics of the signals.
Abstract:
A telecommunications system is provided that includes a unit for communicating channelized digital baseband signals with remotely located units. The channelized digital baseband signals include call information for wireless communication. The unit includes a channelizer section and a transport section. The channelizer section can extract, per channel, the channelized digital baseband signals using channel filters and digital down-converters. The transport section can format the channelized digital baseband signals for transport together using a transport schedule unit for packetizing and packet scheduling the channelized digital baseband signals. A signal processing subsystem can control a gain of uplink digital baseband signals, independently, that are received from the remotely located units prior to summing the uplink digital baseband signals.
Abstract:
Certain aspects involve a wideband remote unit. The wideband remote unit can include one or more antennas and an analog-to-digital converter (“ADC”). The antenna can receive wideband signals. The wideband signals can include an uplink RF signal and a leaked downlink RF signal. The uplink RF signal can have an uplink signal power at or near a noise level. The leaked downlink RF signal can have a downlink signal power greater than the uplink signal power. The ADC can convert the received wideband signals to digital RF signals representing the uplink signal and the downlink signal. The wideband remote unit can transmit the digital RF signals to a unit of a DAS that is in communication with a base station.
Abstract:
Transport of differential signals is provided. In one aspect, a telecommunications system includes a first unit and a second unit. The first unit can calculate a differential signal from an original signal. The differential signal can represent a change in signal levels between constant time intervals in the original signal. The second unit can estimate the original signal from the differential signal received from the first unit over a communication medium.
Abstract:
A mobile communication system includes: a first antenna for receiving communication signals; processing circuitry for processing received communication signals; a second antenna for transmitting processed signals. The processing circuitry utilizes at least one configurable setting for processing received communication signals, the configurable setting being adaptable for varying the processing of received communication signals as the system moves through a mobile environment. The processing circuitry configured to: receive, over time, input representing current geographical location of the system; determine whether the system is entering a first geographical zone based on the input representing the current geographical location and path of system; and automatically adapt the configurable setting as the system enters the first geographical zone, wherein adaptation of configurable setting is based on known signal characteristics associated with the received signals from mobile devices in the first geographical zone.
Abstract:
Certain features relate to unequal distribution of transmitters and receivers in a distributed antenna system (DAS). Remote units in the DAS can be configured as transmitting remote units, receiving remote units, or remote transceiver units that can transmit and receive wireless signals. In some configurations, the DAS can be configured with a greater number of transmitting remote units than receiving remote units. In other configurations, the DAS can be configured with a greater number of receiving remote units. In some aspects, unequal distribution of transmitters and receivers can be obtained by allocation of transmission frequencies and receiver frequencies in the DAS.