Abstract:
The system and method disclose for the controlling of motor switching. The system includes a controller unit having a control signal generator, a memory device, a processing unit, a signal acquisition device, and an analog-to-digital converter. A power stage has a plurality of switches and receives a control signal from the control signal generator and a power signal from a power source. The power stage drives two windings of the set of three stator windings with a multi-state pulse and leaves one stator of the three stator windings undriven. The processing unit acquires a demodulated measured voltage on the undriven winding. The processing unit communicates with the power stage to change which two windings of the three stator windings are driven when the demodulated measured voltage surpasses a threshold.
Abstract:
A line-frequency determining circuit for coupling to the output of a thyristor-switched dimmer that determines a line-frequency of an AC power source that supplies an input to the thyristor-controlled dimmer permits accurate control of periodic probing of the dimmer output. The probing is performed to predict zero-cross times of the AC power source that, in turn, are used to determine a dimming control value of the thyristor-switched dimmer. A minimum conductance is applied across the output of the dimmer during the probing intervals that begin at the turn-on time of the dimmer and last until enough information has been gathered to correctly predict a next zero crossing of the AC line voltage that supplies the input of the dimmer. The probing can be performed at intervals of an odd number of half-cycles of the AC line frequency so that internal dimmer timer operation is not affected by DC offset.
Abstract:
A bipolar junction transistor (BJT) may be used to generate a supply voltage for operating a controller, such as a lighting controller for a LED-based light bulb. A base of the BJT may receive current generated from the supply voltage to control operation of the BJT. Although the base of the BJT would be at a lower voltage than the emitter, a base drive circuit may be coupled between the emitter and the base of the BJT to increase the voltage. As one example, the base drive circuit may be a charge pump. In another example, the BJT may function as its own charge pump. In yet another example, a positive and a negative base current of the BJT may be independently controlled to regulate an output supply voltage VDD from the BJT.
Abstract:
In accordance with embodiments of the present disclosure, a digital microphone system may include a microphone transducer and a digital processing system. The microphone transducer may be configured to generate an analog input signal indicative of audio sounds incident upon the microphone transducer. The digital processing system may be configured to convert the analog input signal into a first digital signal having three or more quantization levels, and in the digital domain, process the first digital signal to convert the first digital signal into a second digital signal having two quantization levels.
Abstract:
Systems and methods for learning dimmer characteristics provide improved efficiency in operating lighting devices. In one embodiment, an apparatus includes a lamp controller that is configured to monitor voltage information associated with one or more lamps or a dimmer of a system, adjust one or more parameters of an attach current profile in conformity with the voltage information to arrive at a selected attach current profile, and apply within the system the selected attach current profile.
Abstract:
A circuit for powering high-efficiency lighting devices from a thyristor-controlled dimmer includes a power converter for powering the high-efficiency lighting devices from input terminals of the circuit. The circuit also includes a control circuit that controls the input current drawn by the input terminals at least while the power converter transfers energy to the lighting devices. The circuit also includes a sensing circuit that determines or measures at least one attach current characteristic at the input terminals and stores an indication of the characteristic for subsequent operation of the control circuit.
Abstract:
In accordance with systems and methods of the present disclosure, an apparatus may include a power converter and a controller. The controller may be configured to monitor a voltage at an input of the power converter, cause the power controller to transfer energy from the input to a load at a target current, decrease the target current responsive to determining that the voltage is less than or equal to an undervoltage threshold, and increase the target current responsive to determining that the voltage is greater than or equal to a maximum threshold voltage.
Abstract:
An electronic system includes a controller that actively controls a rate of charging and discharging of an energy storage capacitor to maintain compatibility with a dimmer. The controller actively controls charging of a capacitor circuit in a switching power converter to a first voltage level across the capacitor circuit. The controller further allows the capacitor to discharge to obtain a second voltage level across the capacitor circuit. The second voltage level is sufficient to draw a current through a phase-cut dimmer to prevent the dimmer from prematurely resetting. The first voltage is sufficient to allow the capacitor to discharge to the second voltage level during each cycle of the line voltage.
Abstract:
In accordance with these and other embodiments of the present disclosure, a system and method for providing compatibility between a load and a secondary winding of an electronic transformer driven by a trailing-edge dimmer may include predicting based on an electronic transformer secondary signal an estimated occurrence of a high-resistance state of the trailing-edge dimmer, wherein the high-resistance state occurs when the trailing-edge dimmer begins phase-cutting an alternating current voltage signal and operating the load in a high-current mode for a period of time immediately prior to the estimated occurrence of the high-resistance state.
Abstract:
In accordance with embodiments of the present disclosure, an apparatus for providing an output signal to an audio transducer may include a control circuit. The control circuit may be configured to predict, based on a magnitude of a signal indicative of the output signal, an occurrence of an event for changing a selectable digital gain and a selectable analog gain and an audio signal path, and responsive to predicting the occurrence of the event, change, at an approximate time in which a zero crossing of the signal indicative of the output signal occurs, the selectable digital gain and the selectable analog gain.