Abstract:
A coated viscoelastic polyurethane foam includes a viscoelastic polyurethane foam having the coating thereon, the viscoelastic polyurethane foam having a resiliency of less than or equal to 20% as measured according to ASTM D3574, and a coating material on and embedded within the viscoelastic polyurethane foam, the coating material including an aqueous polymer emulsion and an encapsulated phase change material.
Abstract:
An epoxy composition that includes an epoxy-terminated prepolymer, an alkanolamine hardener having at least one hydroxyl group and an organometallic compound, where amine groups of the alkanolamine hardener react with epoxy groups of the epoxy-terminated prepolymer in a stoichiometric ratio to form a cured epoxy composition. The epoxy-terminated prepolymer is formed from a reaction product of an amine terminated polymeric polyol and a molar excess of epoxy groups in an epoxy monomer, relative to a molar amount of amine groups in the amine terminated polymeric polyol.
Abstract:
A polyurethane foam for comfort application, includes the reaction product of a first composition that includes from 20 wt % to 80 wt % of an aqueous component and from 20 wt % to 80 wt % of a hydrophilic isocyanate-terminated prepolymer component. The aqueous component includes at least 90 wt % of water based on the total weight of the aqueous component and the hydrophilic isocyanate-terminated prepolymer component has a free NCO content from 1 wt % to 15 wt % and is a reaction product of a second composition that includes an isocyanate component and an isocyanate-reactive component. The isocyanate component includes at least 90 wt % of methylenediphenyl diisocyanate (MDI) and a weight ratio of 4,4′-methylene diphenylisocyanate isomer to 2,4′-methylene diphenylisocyanate isomer greater than 1:1 and less than 10:1, the isocyanate-reactive component including polyethylene glycol and a polyoxypropylene-polyoxyethylene polyol having a molecular weight of from 3000 g/mole to 7500 g/mole and a polyoxyethylene content of at least 50 wt %, and the hydrophilic isocyanate terminated prepolymer component having an polyoxyethylene content from 45 wt % to 75 wt %, based on the total weight of the second composition.
Abstract:
Polyisocyanate-based polymers are formed by curing a reaction mixture containing at least one polyisocyanate and at least one isocyanate-reactive compound having at least two isocyanate-reactive groups in the presence of a bismuth thiophosphoric acid diester salt.
Abstract:
Embodiments of the invention provide for methods of producing a composition comprising a crosslinkable silane-terminated polymer having at least one crosslinkable silyl group in each molecule. The method comprises providing a polymer having at least one unsaturated group and at least one alcoholic hydroxyl group in each molecule, adding to the polymer a compound having a hydrogen-silicon bond and a crosslinkable silyl group in each molecule and a hydrosilylation catalyst to thereby carry out a hydrosilylation reaction to form a composition comprising hydrosilylated polyoxyalkylene polymers, reacting the hydrosilylated polyoxyalkylene polymers with at least one isocyanate in the presence of a first tin-free catalyst to form an isocyanate reacted hydrosilylated polymer, and optionally reacting the isocyanate reacted hydrosilylated polymer with a polyol having a nominal functionality of at least 2 to form a polyol reacted crosslinkable silane-terminated polymer.
Abstract:
Methods of producing a composition comprising a crosslinkable silane-terminated polymer having at least one cross-linkable silyl group in each molecule are provided. The method may comprise providing a polymer having at least one unsaturated group and at least one alcohol hydroxyl group in each molecule and having a number average molecular weight between about 100 and about 5,000, adding to the polymer a compound having a hydrogen-silicon bond and a crosslinkable silyl group in each molecule and a hydrosilylation catalyst to thereby carry out a hydrosilylation reaction to form a composition comprising hydrosilylated polymers, wherein the hydrosilylation reaction has a hydrosilylation efficiency greater than 50% as determined by 1H-NMR, capping the hydrosilylated polymers by adding the hydrosilylated polymer to at least one isocyanate at an index of between about 100 and about 250, and reacting the isocyanate capped hydrosilylated polymer with a polyol having a nominal functionality of at least 2 to form the composition comprising a crosslinkable silane-terminated polymer.