Abstract:
Elastomers are formed by curing a reaction mixture that includes an polyepoxide-terminated polyether having a linear or branched polyether chain that has a molecular weight of at least 2000, at least two epoxide groups that has an epoxide equivalent weight of at least 400 2) a curing agent containing at least one polythiol compound having at least two thiol groups and an equivalent weight per thiol group of up to 500, and 3) at least one base catalyst.
Abstract:
An amine endcapped adduct composition including an amine endcapped adduct formed from a monofunctional epoxide and a polyether amine. The monofunctional epoxide and the polyether amine are combined in a molar ratio of 1.0:2.0 to 1.0:8.0 moles of epoxide functionalities to moles of polyether amine functionalities.
Abstract:
Elastomers are prepared from a reaction mixture that contains a polyene compound, an epoxy resin, a thiol curing agent and a basic catalyst. The polyene compound has an average of at least two groups containing aliphatic carbon-carbon double bonds capable of reaction with a thiol group. At least one of said aliphatic carbon-carbon double bonds is separated from each other said aliphatic carbon-carbon double bond by an aliphatic spacer group having a weight of at least 500 atomic mass units. These elastomers are typically phase-separated materials having good elongation and tensile properties.
Abstract:
Elastomers are prepared from a reaction mixture that contains a polyene compound, an epoxy resin, a thiol curing agent and a basic catalyst. The polyene compound has an average of at least two groups containing aliphatic carbon-carbon double bonds capable of reaction with a thiol group. At least one of said aliphatic carbon-carbon double bonds is separated from each other said aliphatic carbon-carbon double bond by an aliphatic spacer group having a weight of at least 500 atomic mass units. These elastomers are typically phase-separated materials having good elongation and tensile properties.
Abstract:
Polymers are prepared from a reaction mixture that contains a polyene compound, an epoxy resin, a mixture of a thiol curing agent and an amine curing agent, and a basic catalyst. The polyene compound has an average of at least two groups containing aliphatic carbon-carbon double bonds capable of reaction with a thiol group. At least one of said aliphatic carbon-carbon double bonds is separated from each other said aliphatic carbon-carbon double bond by an aliphatic spacer group having a weight of at least 500 atomic mass units. These polymers are typically phase-separated materials having good elongation and tensile properties.
Abstract:
A cooperative catalyst system includes a Lewis acid and a Lewis base for the formation of non-isocyanate based polyurethane using a cyclic carbonate and an amine. A method of forming non-isocyanate based polyurethane includes providing a cyclic carbonate, an amine, and a cooperative catalyst system that has a Lewis acid and a Lewis base.
Abstract:
A continuous process for producing a polyurea concentrate or powder. The process includes combing at least one amine and an isocayante in the presence of a liquid diluent or a base oil in a rotor stator mixer. The concentrate comprises a polyurea in a base oil wherein the concentration of from about 20 weight percent to about 50, or 40 or 35 or 30 weight percent of polyurea based on total weight of grease thickener. The powder has particle size of 2 to 400 microns. This concentrate or powder can then be formulated by grease manufacturers to the desired final properties without the need for handling of the isocyanate and amine raw materials.
Abstract:
Elastomers are formed by curing a reaction mixture that includes an polyepoxide-terminated polyether having a linear or branched polyether chain that has a molecular weight of at least 2000, at least two epoxide groups that has an epoxide equivalent weight of at least 400 2) a curing agent containing at least one polythiol compound having at least two thiol groups and an equivalent weight per thiol group of up to 500, and 3) at least one base catalyst.
Abstract:
A method of fused filament fabrication (FFF) additive manufacturing comprises employing an olefin block copolymer. The method allows for the additive manufacturing article that retains the desirable mechanical properties of polyolefins such as polyethylene or polypropylene without experiencing the problems inherent in FFF printing of polyethylene or polypropylene particularly in the absence of solid fillers. In a particular embodiment, the additive manufactured article is comprised of the olefin block copolymer is comprised of block composite or crystalline block composite polymer or mixture thereof comprising the olefin block copolymer, wherein the olefin block copolymer is comprised of an isotactic propylene block and a polyethylene rich block.
Abstract:
A contaminant capturing liner includes a cured product of a composition including an epoxy resin component including at least one alkanolamine modified epoxy resin and at least one hardener. The contaminant capturing liner includes at least one contaminant capturing material embedded therewithin, and the contaminant capturing liner is a permeable layer having a difference between dry glass transition temperature and wet glass transition temperature of at least 14 C.