摘要:
A method of making a light active sheet. A bottom substrate having an electrically conductive surface is provided. A hotmelt adhesive sheet is provided. Light active semiconductor elements, such as LED die, are embedded in the hotmelt adhesive sheet. The LED die each have a top electrode and a bottom electrode. A top transparent substrate is provided having a transparent conductive layer. The hotmelt adhesive sheet with the embedded LED die is inserted between the electrically conductive surface and the transparent conductive layer to form a lamination. The lamination is run through a heated pressure roller system to melt the hotmelt adhesive sheet and electrically insulate and bind the top substrate to the bottom substrate. As the hotmelt sheet is softened, the LED die breakthrough so that the top electrode comes into electrical contact with the transparent conductive layer of the top substrate and the bottom electrode comes into electrical contact with the electrically conductive surface of the bottom substrate. Thus, the p and n sides of each LED die are automatically connected to the top conductive layer and the bottom conductive surface. Each LED die is encapsulated and secured between the substrates in the flexible, hotmelt adhesive sheet layer. The bottom substrate, the hotmelt adhesive (with the embedded LED die) and the top substrate can be provided as rolls of material. The rolls are brought together in a continuous roll fabrication process, resulting in a flexible sheet of lighting material.
摘要:
A photo-radiation source for the selective polymerization of photo-radiation-curable organic material. In a first embodiment, a first electrode is provided with a second electrode disposed adjacent to the first electrode, and defining a gap therebetween. A photo-radiation emission layer is disposed in the gap. The photo-radiation emission layer includes a charge-transport matrix material and an emissive particulate dispersed within the charge-transport matrix material. The emissive particulate receives electrical energy through the charge-transport matrix material applied as a voltage to the first electrode and the second electrode photo-radiation. The emissive particulate generates photo-radiation in response to the applied voltage. This photo-radiation is effective for the selective polymerization of photo-radiation curable organic material. In a second embodiment, a plurality of light emitting diode chips generate a photo-radiation spectrum effective for the selective polymerization of photo-radiation-curable organic material. Each chip has an anode and a cathode. A first electrode is in contact with each anode of the respective light emitting diode chips. A second electrode is in contact with each cathode of the respective light emitting diode chips. At least one of the first electrode and the second electrode comprises a transparent conductor. The plurality of chips are permanently fixed in a formation by being squeezed between the first electrode and the second electrode without the use of solder or wiring bonding. The plurality of chips can be permanently fixed in a formation by being adhered to at least one of the first electrode and the second electrode using a conductive adhesive. In accordance with this embodiment of the invention, ultra-high chip packing density is obtained without the need for solder or wiring bonding each individual chip.
摘要:
A method of making a light active sheet. A bottom substrate having an electrically conductive surface is provided. A hotmelt adhesive sheet is provided. Light active semiconductor elements, such as LED die, are embedded in the hotmelt adhesive sheet. The LED die each have a top electrode and a bottom electrode. A top transparent substrate is provided having a transparent conductive layer. The hotmelt adhesive sheet with the embedded LED die is inserted between the electrically conductive surface and the transparent conductive layer to form a lamination. The lamination is run through a heated pressure roller system to melt the hotmelt adhesive sheet and electrically insulate and bind the top substrate to the bottom substrate. As the hotmelt sheet is softened, the LED die breakthrough so that the top electrode comes into electrical contact with the transparent conductive layer of the top substrate and the bottom electrode comes into electrical contact with the electrically conductive surface of the bottom substrate. Thus, the p and n sides of each LED die are automatically connected to the top conductive layer and the bottom conductive surface. Each LED die is encapsulated and secured between the substrates in the flexible, hotmelt adhesive sheet layer. The bottom substrate, the hotmelt adhesive (with the embedded LED die) and the top substrate can be provided as rolls of material. The rolls are brought together in a continuous roll fabrication process, resulting in a flexible sheet of lighting material.
摘要:
Device structures for sheets of light active material. A first substrate has a transparent first conductive layer. A pattern of light active semiconductor elements are fixed to the first substrate. The light active semiconductor elements have an n-side and a p-side. Each light active semiconductor element has either of the n-side or the p-side in electrical communication with the transparent conductive layer. A second substrate has a second conductive layer. An adhesive secures the second substrate to the first substrate so that the other of said n-side or said p-side of each said light active semiconductor element is in electrical communication with the second conductive layer. Thus forming a solid-state light active device.