摘要:
A programmable logic device having a Logic Element with an N-stage Look Up Table (LUT), dedicated hardware for performing a non-LUT logic function, and an over-ride element configured to selectively force a muxing stage within the N-stage LUT to select either one or more LUT configuration bit inputs or the output of the non-LUT logic function as the output of the LUT. In various embodiments, the non-LUT functions can include addition, subtraction, multiplication, division, digital signal processing, memory storage, etc.
摘要:
The invention relates to the use of pressurised metered dose inhalers (MDIs) having part or all of their internal surfaces consisting of stainless steel, anodised aluminium or lined with an inert organic coating; and to compositions to be delivered with said MDIs.
摘要:
A programmable logic device (“PLD”) architecture includes logic elements (“LEs”) grouped together in clusters called logic array blocks (LABs”). To save area, local feedback resources (for feeding outputs of the LEs in a LAB back to inputs of LEs in the LAB) are reduced or eliminated as compared to in the prior art. Because all (or at least more) of any LE-output-to-LE-input connections of LEs that are working together in a LAB must be routed through the general-purpose input routing resources of the LAB, it is important to conserve those resources. This is accomplished, for example, by giving greater importance to finding logic functions that have common inputs when deciding what logic functions to implement together in a LAB.
摘要:
The logic cells (HLEs) of a structured application-specific integrated circuit (structured ASIC) can be used to provide memory blocks of various sizes. Any one or more of several techniques may be employed to facilitate doing this for various user designs that may have different requirements (e.g., in terms of size) for such memory blocks. For example, pre-designed macros of memory blocks may be provided and then combined as needed to provide memory blocks of various sizes. Placement constraints may be observed for certain portions of the memory circuitry (e.g., the memory core), while other portions (e.g., address predecoder circuitry, write and read data registers, etc.) may be located relatively freely.
摘要:
A composition for use in an aerosol inhaler, the composition comprising an active material, a propellant containing a hydrofluoroalkane (HFA), a cosolvent and further comprising a low volatility component to increase the mass median aerodynamic diameter (MMAD) of the aerosol particles on actuation of the inhaler, filling of an aerosol container and use of the composition for the administration of active materials by inhalation.
摘要:
Configurable time-borrowing flip-flops may be based on configurable pulse generation circuitry and pulse latches. The circuitry may use a self-timed architecture that controls the width of clock pulses that are generated so that the pulse latches that are controlled by the clock pulses exhibit a reduced risk of race through conditions. Latch circuitry may be provided that is based on a pulse latch and an additional latch connected in series with the pulse latch. In situations in which there is a potential for race through conditions on an integrated circuit, the additional latch may be switched into use to convert the latch circuitry into an edge-triggered flip flop. Clock trees may be provide with configurable shorting structures that help to reduce clock skew. Low-contention clock drivers may drive signals onto the clock tree paths.
摘要:
The logic cells (HLEs) of a structured application-specific integrated circuit (structured ASIC) can be used to provide memory blocks of various sizes. Any one or more of several techniques may be employed to facilitate doing this for various user designs that may have different requirements (e.g., in terms of size) for such memory blocks. For example, pre-designed macros of memory blocks may be provided and then combined as needed to provide memory blocks of various sizes. Placement constraints may be observed for certain portions of the memory circuitry (e.g., the memory core), while other portions (e.g., address predecoder circuitry, write and read data registers, etc.) may be located relatively freely.
摘要:
In accordance with one aspect of the invention, a hole is formed within an LE array of a PLD by interrupting the LE array base signal routing architecture such that a hole is left for IP function block to be incorporated. An interface region is provided for interfacing the remaining LE array base signal routing architecture to the IP function block.
摘要:
Configurable time-borrowing flip-flops are provided for circuits such as programmable logic devices. The flip-flops may be based on a configurable delay circuit and two latches or may be based on a configurable pulse generation circuit and a single latch. In designs based on two latches, a first and a second latch are arranged in series. A clock signal is delayed using a configurable delay circuit. Programmable memory elements that have been loaded with configuration data may be used to adjust how much delay is produced by the configurable delay circuit. The delayed version of the clock signal is provided to a clock input associated with the first latch. The second latch has a clock input that receives the clock signal without delay. In designs based on a single latch, a configurable pulse generation circuit receives a clock signal for the flip-flop and generates a corresponding clock pulse for the latch.
摘要:
A programmable logic device (PLD) includes a plurality of logic array blocks (LAB's) connected by a PLD routing architecture. At least one LAB includes a logic element (LE) configurable to arithmetically combine a plurality of binary input signals in a plurality of stages. The LE comprises look-up table (LUT) logic having K inputs (a “K-LUT”). The K-LUT is configured to input the binary input signals at respective inputs of the K-LUT logic cell and to provide, at a plurality of outputs of the K-LUT logic cell, respective binary result signals indicative of at least two of the plurality of stages of the arithmetic combination of binary input signals. An input line network includes a network of input lines, the input lines configurable to receive input signals from the PLD routing architecture that represent the binary input signals and to provide the input signals to the K-LUT. An output line network includes a network of output lines, the output lines configured to receive, from the K-LUT, output signals that represent the binary result signals and to provide the output signals to the PLD routing architecture. The described LUT's can perform arithmetic efficiently, as well as non-arithmetic functions.