-
公开(公告)号:US20240024873A1
公开(公告)日:2024-01-25
申请号:US18374319
申请日:2023-09-28
Applicant: EMULATE, Inc.
Inventor: S. Jordan Kerns , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Daniel Levner , Carolina Lucchesi , Antonio Varone , Remi Villenave
CPC classification number: B01L3/502753 , C12M29/04 , C12M23/16 , C12M35/08 , B01L3/502715 , G01N33/5044 , C12N5/0018
Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas. Additionally, these microfluidic “organ-on-chips” allow identification of cells and cellular derived factors driving disease states in addition to drug testing for reducing inflammation effecting epithelial regions.
-
公开(公告)号:US11788044B2
公开(公告)日:2023-10-17
申请号:US16820530
申请日:2020-03-16
Applicant: EMULATE, INC.
Inventor: Antonio Varone , Magdalena Kasendra , Carolina Lucchesi , S. Jordan Kerns , Riccardo Barrile , Sonalee Barthakur
CPC classification number: C12M23/16 , B01L3/502715 , B01L3/502761 , C12M23/26 , C12M25/02 , C12N5/069 , G01N33/5047 , G01N33/5064 , B01L2200/16 , B01L2300/123 , B01L2300/16 , C12N2500/00 , C12N2501/052 , C12N2501/2301 , C12N2501/2306 , C12N2501/25
Abstract: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a Theologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.
-
公开(公告)号:US20210062129A1
公开(公告)日:2021-03-04
申请号:US16983850
申请日:2020-08-03
Applicant: EMULATE, INC.
Inventor: Janna Nawroth , Riccardo Barrile , David Conegliano , Remi Villenave , Carolina Carolina , Justin Nguyen , Antonio Varone , Catherine Karalis , Geraldine Hamilton
Abstract: An in vitro microfluidic “organ-on-chip” device is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a stem cell-based Lung-on-Chip is described. This in vitro microfluidic system can be used for modeling differentiation of cells on-chip into lung cells, e.g., a lung (Lung-On-Chip), bronchial (Airway-On-Chip; small-Airway-On-Chip), alveolar sac (Alveolar-On-Chip), etc., for use in modeling disease states of derived tissue, i.e. as healthy, pre-disease and diseased tissues. Additionally, stem cells under differentiation protocols for deriving (producing) differentiated lung cells off-chips may be seeded onto microfluidic devices at any desired point during the in vitro differentiation pathway for further differentiation on-chip or placed on-chip before, during or after terminal differentiation. Additionally, these microfluidic “stem cell-based Lung-on-Chip” allow identification of cells and cellular derived factors driving disease states in addition to drug testing for diseases, infections and for reducing inflammation effecting lung alveolar and/or epithelial regions. Further, fluidic devices are provided seeded with primary alveolar cells for use in providing a functional Type II and Type I cell layer, wherein Type II cells express and secrete surfactants, such as Surfactant B (Surf B; SP-B) and Surfactant C (Surf C; SP-C), which were detectable at the protein level by antibody staining in Type II cells. A number of uses are contemplated for the devices and cells, including but not limited to, for use under inflammatory conditions, in drug development and testing, and for individualized (personalized) medicine. Moreover, an ALI-M was developed for supporting multiple cell types in co-cultures with functional Type II and Type I cells.
-
公开(公告)号:US20200332240A1
公开(公告)日:2020-10-22
申请号:US16820530
申请日:2020-03-16
Applicant: EMULATE, INC.
Inventor: Antonio Varone , Magdalena Kasendra , Carolina Lucchesi , S. Jordan Kerns , Riccardo Barrile , Sonalee Barthakur
Abstract: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a Theologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.
-
公开(公告)号:US20190119618A1
公开(公告)日:2019-04-25
申请号:US16089220
申请日:2017-03-30
Applicant: EMULATE, INC.
Inventor: Geraldine Hamilton , Norman Wen , Catherine Karalis , Antonio Varone , Daniel Levner , Riccardo Barrile
Abstract: The invention generally relates to a microfluidic platforms or “chips” for testing and understanding cancer, and, more specifically, for understanding the factors that contribute to cancer invading tissues and causing metastases. Tumor cells are grown on microfluidic devices with other non-cancerous tissues under conditions that simulate tumor invasion. The interaction with immune cells can be tested to inhibit this activity by linking a cancer chip to a lymph chip.
-
公开(公告)号:US20180185844A1
公开(公告)日:2018-07-05
申请号:US15819435
申请日:2017-11-21
Applicant: EMULATE, Inc.
Inventor: S. Jordan Kerns , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Daniel Levner , Carolina Lucchesi , Antonio Varone , Remi Villenave
Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas. Additionally, these microfluidic “organ-on-chips” allow identification of cells and cellular derived factors driving disease states in addition to drug testing for reducing inflammation effecting epithelial regions.
-
公开(公告)号:US20180017584A1
公开(公告)日:2018-01-18
申请号:US15648104
申请日:2017-07-12
Applicant: Emulate Inc. , JANSSEN BIOTECH, Inc.
Inventor: Daniel Levner , Christopher David Hinojosa , Noeman Wen , Jacob Fraser , Justin Nguyen , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Hyoung Shin Park , Antonio Varone , Andries Van der Meer , Monica Otieno , David Conegliano
CPC classification number: G01N33/86 , B01L3/5023 , B01L3/502707 , B01L3/502715 , B01L3/502746 , B01L3/502761 , B01L2200/02 , B01L2200/027 , B01L2200/0605 , B01L2200/0647 , B01L2200/16 , B01L2300/0809 , B01L2300/0816 , B01L2300/0867 , B01L2300/0883 , B01L2300/0887 , B01L2300/14 , B01L2300/16 , C12M23/16 , C12M29/00 , C12M29/04 , C12M29/10 , C12M35/08 , C12M41/46 , G01N33/54366 , G01N2500/10
Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
-
公开(公告)号:US20180017583A1
公开(公告)日:2018-01-18
申请号:US15648029
申请日:2017-07-12
Applicant: Emulate Inc. , JANSSEN BIOTECH, Inc
Inventor: Daniel Levner , Christopher David Hinojosa , Norman Wen , Jacob Fraser , Justin Nguyen , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Hyoung Shin Park , Antonio Varone , Andries Van der Meer , Monica Otieno , David Conegliano
CPC classification number: G01N33/86 , B01L3/5023 , B01L3/502707 , B01L3/502715 , B01L3/502746 , B01L3/502761 , B01L2200/02 , B01L2200/027 , B01L2200/0605 , B01L2200/0647 , B01L2200/16 , B01L2300/0809 , B01L2300/0816 , B01L2300/0867 , B01L2300/0883 , B01L2300/0887 , B01L2300/14 , B01L2300/16 , C12M23/16 , C12M29/00 , C12M29/04 , C12M29/10 , C12M35/08 , C12M41/46 , G01N33/54366 , G01N2500/10
Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
-
公开(公告)号:US20180017582A1
公开(公告)日:2018-01-18
申请号:US15648000
申请日:2017-07-12
Applicant: Emulate Inc. , JANSSEN BIOTECH, INC.
Inventor: Daniel Levner , Christopher David Hinojosa , Norman Wen , Jacob Fraser , Justin Nguyen , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Hyoung Shin Park , Antonio Varone , Andries Van der Meer , Monica Otieno , David Conegliano
CPC classification number: G01N33/86 , B01L3/5023 , B01L3/502707 , B01L3/502715 , B01L3/502746 , B01L3/502761 , B01L2200/02 , B01L2200/027 , B01L2200/0605 , B01L2200/0647 , B01L2200/16 , B01L2300/0809 , B01L2300/0816 , B01L2300/0867 , B01L2300/0883 , B01L2300/0887 , B01L2300/14 , B01L2300/16 , C12M23/16 , C12M29/00 , C12M29/04 , C12M29/10 , C12M35/08 , C12M41/46 , G01N33/54366 , G01N2500/10
Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
-
公开(公告)号:US20180015455A1
公开(公告)日:2018-01-18
申请号:US15648049
申请日:2017-07-12
Applicant: Emulate Inc. , JANSSEN BIOTECH, Inc
Inventor: Daniel Levner , Christopher David Hinojosa , Norman Wen , Jacob Fraser , Justin Nguyen , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Hyoung Shin Park , Antonio Varone , Andries Van der Meer , Monica Otieno , David Conegliano
CPC classification number: G01N33/86 , B01L3/5023 , B01L3/502707 , B01L3/502715 , B01L3/502746 , B01L3/502761 , B01L2200/02 , B01L2200/027 , B01L2200/0605 , B01L2200/0647 , B01L2200/16 , B01L2300/0809 , B01L2300/0816 , B01L2300/0867 , B01L2300/0883 , B01L2300/0887 , B01L2300/14 , B01L2300/16 , C12M23/16 , C12M29/00 , C12M29/04 , C12M29/10 , C12M35/08 , C12M41/46 , G01N33/54366 , G01N2500/10
Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
-
-
-
-
-
-
-
-
-