-
公开(公告)号:US12091650B2
公开(公告)日:2024-09-17
申请号:US16286185
申请日:2019-02-26
发明人: S. Jordan Kerns , Norman Wen , Carolina Lucchesi , Christopher David Hinojosa , Jacob Fraser , Geraldine Hamilton , Gad Vatine , Samuel Sances , Clive Svendsen , Daniel Levner , Dhruv Sareen
CPC分类号: C12M23/16 , B01L3/502715 , C12M25/02 , C12N5/0068 , C12N5/0619 , C12N5/0622 , C12N5/069 , B01L2200/0647 , B01L2300/0861 , C12N2502/081 , C12N2502/28 , C12N2506/02 , C12N2506/45 , C12N2531/00 , C12N2539/00
摘要: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
-
公开(公告)号:US20240076625A1
公开(公告)日:2024-03-07
申请号:US18243242
申请日:2023-09-07
申请人: EMULATE, INC.
发明人: Antonio Varone , Magdalena Kasendra , Carolina Lucchesi , S. Jordan Kerns , Riccardo Barrile , Sonalee Barthakur
CPC分类号: C12N5/0679 , B01L3/502715 , B01L3/502761 , C12M23/16 , C12M23/26 , C12M25/02 , C12N5/069 , G01N1/30 , G01N33/5047 , G01N33/5064 , B01L2200/16 , B01L2300/123 , B01L2300/16 , C12N2500/00 , C12N2501/052 , C12N2501/2301 , C12N2501/2306 , C12N2501/25
摘要: The present invention contemplates compositions, devices and methods of simulating biological fluids in a fluidic device, including but not limited to a microfluidic chip. In one embodiment, fluid comprising a colloid under flow in a microfluidic chip has a fluid density or viscosity similar to a bodily fluid, e.g. blood, lymph, lung fluid, or the like. In one embodiment, a fluid is provided as a rheologically biomimetic blood surrogate or substitute for simulating physiological shear stress and cell dynamics in fluidic device, including but not limited to immune cells.
-
公开(公告)号:US11833512B2
公开(公告)日:2023-12-05
申请号:US17215900
申请日:2021-03-29
申请人: EMULATE, Inc.
发明人: S. Jordan Kerns , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Daniel Levner , Carolina Lucchesi , Antonio Varone , Remi Villenave
CPC分类号: B01L3/502753 , B01L3/502715 , C12M23/16 , C12M29/04 , C12M35/08 , G01N33/5044 , C12N5/0018 , C12N5/0075
摘要: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas. Additionally, these microfluidic “organ-on-chips” allow identification of cells and cellular derived factors driving disease states in addition to drug testing for reducing inflammation effecting epithelial regions.
-
公开(公告)号:US11733234B2
公开(公告)日:2023-08-22
申请号:US15648339
申请日:2017-07-12
申请人: Emulate Inc.
发明人: Daniel Levner , Kyung Jin Jang , Jacob Fraser , S. Jordan Kerns , Antonio Varone , Dongeun Huh
IPC分类号: C12N5/00 , C12N5/02 , A61K38/00 , C07K2/00 , C07K4/00 , C07K5/00 , C07K7/00 , C07K14/00 , C07K16/00 , C07K17/00 , G01N33/50 , C07K14/78 , C12N5/071 , C12M3/06 , C12M1/00 , C12M1/12 , C12N5/077
CPC分类号: G01N33/5032 , C07K2/00 , C07K14/78 , C12M23/16 , C12M23/20 , C12M25/02 , C12N5/0018 , C12N5/0068 , C12N5/067 , C12N5/0658 , G01N33/5014 , C12N2500/32 , C12N2521/00 , C12N2533/30 , C12N2533/50 , C12N2533/52 , C12N2533/54 , C12N2533/90 , C12N2535/10 , C12N2537/10 , G01N33/5044
摘要: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
-
公开(公告)号:US20220282221A1
公开(公告)日:2022-09-08
申请号:US17678485
申请日:2022-02-23
发明人: S. Jordan Kerns , Norman Wen , Carol Lucchesi , Christopher David Hinojosa , Jacob Fraser , Jefferson Puerta , Geraldine Hamilton , Robert Barrett , Clive Svendsen , Daniel Levner , Stephen R. Targan , Michael Workman , Dhruv Sareen , Uthra Rajamani , Magdalena Kasendra
摘要: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
-
公开(公告)号:US20220155328A1
公开(公告)日:2022-05-19
申请号:US17538518
申请日:2021-11-30
申请人: EMULATE, Inc.
发明人: JOSIAH SLIZ , Daniel Levner , Brian Zuckerman , Norman Wen , Jonathan Rubins , Tanvi Shroff , Christopher David Hinojosa , Grace Ahn , Victor Antontsev , Jefferson Puerta , David Conegliano , S. Jordan Kerns
摘要: The present invention is related to the field of microfluidics and compound distribution within microfluidic devices and their associated systems. In one embodiment, present invention aims to solve the problem of molecule and compound absorbency into the materials making up laboratory equipment, microfluidic devices and their related infrastructure, without unduly restricting gas transport within microfluidic devices.
-
公开(公告)号:US11248203B2
公开(公告)日:2022-02-15
申请号:US17160617
申请日:2021-01-28
申请人: EMULATE, INC.
发明人: Daniel Levner , Christopher David Hinojosa , Norman Wen , Antonio Varone , Justin Nguyen , Lina Williamson , S. Jordan Kerns , Catherine Karalis , Geraldine Hamilton , Carol Lucchesi
IPC分类号: C12M3/06 , C12M1/12 , C12M1/00 , C12M1/42 , G01N33/50 , G01N33/543 , C12N5/0793 , C12N5/079 , C12N5/071 , C12N5/077
摘要: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.
-
公开(公告)号:US11001795B2
公开(公告)日:2021-05-11
申请号:US15819966
申请日:2017-11-21
申请人: EMULATE, Inc.
发明人: S. Jordan Kerns , Jenifer Obrigewitch , Michael Salmon , Magdalena Kasendra , Benjamin Richards Umiker
摘要: An in vitro microfluidic gut-on-chip is described herein that mimics the structure and at least one function of specific areas of the gastrointestinal system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and gastrointestinal epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory gastrointestinal tissue, e.g., Crohn's disease, colitis and other inflammatory gastrointestinal disorders. These multicellular, layered microfluidic gut-on-chip further allow for comparisons between types of gastrointestinal tissues, e.g., small intestinal deuodejeum, small intestinal ileium, large intestinal colon, etc., and between disease states of gastrointestinal tissue, i.e. healthy, pre-disease and diseased areas. Additionally, these microfluidic gut-on-chips allow identification of cells and cellular derived factors driving disease states and drug testing for reducing inflammation.
-
公开(公告)号:US10961496B2
公开(公告)日:2021-03-30
申请号:US15781370
申请日:2016-12-02
申请人: EMULATE, INC.
发明人: Daniel Levner , Christopher David Hinojosa , Norman Wen , Antonio Varone , Justin Nguyen , Lina Williamson , S. Jordan Kerns , Catherine Karalis , Geraldine Hamilton , Carol Lucchesi
IPC分类号: C12M1/42 , C12M3/06 , C12M1/12 , G01N33/50 , G01N33/543 , C12M1/00 , C12N5/0793 , C12N5/079 , C12N5/071 , C12N5/077
摘要: A microfluidic device is contemplated comprising an open-top cavity with structural anchors on the vertical wall surfaces that serve to prevent gel shrinkage-induced delamination, a porous membrane (optionally stretchable) positioned in the middle over a microfluidic channel(s). The device is particularly suited to the growth of cells mimicking dermal layers.
-
公开(公告)号:US20240309331A1
公开(公告)日:2024-09-19
申请号:US18591819
申请日:2024-02-29
申请人: Emulate, Inc.
发明人: S. Jordan Kerns , Catherine Karalis , Janna Nawroth , Remi Villenave , Jenifer Obrigewitch , Doris Roth , Michael Salmon , Athanasia Apostolou , David Conegliano
CPC分类号: C12N5/0679 , C12M23/16 , C12M35/04 , C12M35/08 , C12N1/20 , C12N5/0688 , C12Q1/04 , C12N2500/02 , C12N2502/70 , C12N2506/23 , C12N2537/00
摘要: The present invention relates to a combination of microbes, cell culture systems and microfluidic fluidic systems for use in providing a human Intestine On-Chip with optimal intestinal motility. More specifically, in some embodiments, a microfluidic chip containing intestinal epithelial cells co-cultured with intestinal endothelial cells in the presence of bacteria, such as probiotic bacteria, may find use in providing an Intestine-On-Chip for testing intestinal motility function. In some embodiments, an Intestine On-Chip may be used for identifying (testing) therapeutic compounds continuing probiotic microbes or compounds for inducing intestinal motility for use in treating gastrointestinal disorders or diseases related to intestinal function.
-
-
-
-
-
-
-
-
-