Abstract:
An optical beamforming device includes an RF front-end transmitting or receiving RF signals and an optical beamformer forming or compensating for a time delay for each of the plurality of channels based on the RF signals. The optical beamformer includes E/O converters converting the RF signals into optical signals, respectively, a linear modulator generating an optical modulation signal based on an RF input signal, a TTD array outputting an optical combined signal obtained by compensating for a time delay degree of the input optical signals or outputting output optical signals, in each of which a time delay is formed for each channel, by distributing the optical modulation signal, a photo detector generating an RF output signal to an RF back-end based on the optical combined signal, and O/E converters converting the output optical signals into RF signals, respectively.
Abstract:
Provided is a method of manufacturing a distributed feedback laser diode array (DFB-LDA) including: forming active layers corresponding to a plurality of channels using electron beam lithography; forming a plurality of mask patterns between the active layers; and growing the active layers using electron beam lithography, wherein the opening widths of the plurality of mask patterns corresponding to the plurality of channels are different from one another.
Abstract:
Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
Abstract:
A laser module includes a Transmitter Optical Sub-Assembly (TOSA) and a heat radiating means. The TOSA generates light by an electrical signal and transmits the generated light through an optical fiber. The heat radiating means is in contact with the TOSA to discharge heat generated by the TOSA.
Abstract:
Provided are a wavelength swept source apparatus and a method for controlling thereof. According to the provided apparatus and method, single mode light is generated, a basic optical comb is generated by modulating the generated single mode light, and a plurality of optical combs having different a frequency band from that of the basic optical comb is generated by modulating the plurality of light rays. The plurality of light rays and light rays included in the plurality of optical combs are sequentially emitted according to frequencies of the plurality of light rays and the light rays included in the plurality of optical combs. A value of a control variable is adjusted based on a characteristic of the generated single mode light, the plurality of light rays, the light rays included in the plurality of optical combs, and the emitted light rays.