摘要:
Provided are a process for economically preparing a graphene shell having a desired configuration which is applicable in various fields wherein in the process the thickness of the graphene shell can be controlled, and a graphene shell prepared by the process.
摘要:
An economical method of preparing a large-sized graphene sheet having a desired thickness includes forming a film, the film comprising a graphitizing catalyst; heat-treating a gaseous carbon source in the presence of the graphitizing catalyst to form graphene; and cooling the graphene to form a graphene sheet. A graphene sheet prepared according to the disclosed method is also described.
摘要:
Example embodiments relate to a poly-crystalline silicon (Si) thin film, a thin film transistor (TFT) formed from a poly-crystalline silicon (Si) thin film and methods of manufacturing the same. The method of manufacturing the poly-crystalline Si thin film includes forming an active layer formed of amorphous Si on a substrate, coating a gold nanorod on the active layer, and irradiating infrared rays onto the gold nanorod to crystallize the active layer.
摘要:
Provided are a graphene sheet and a process of preparing the same. Particularly, a process of economically preparing a large-area graphene sheet having a desired thickness and a graphene sheet prepared by the process are provided.
摘要:
Provided are a method of doping carbon nanotubes, p-doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes. Particularly, a method of doping carbon nanotubes having improved conductivity by reforming the carbon nanotubes using an oxidizer, doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes are provided
摘要:
Carbon-containing nickel-particle powder is provided. The carbon-containing nickel-particle powder has improved shrinkage property when fired due to the presence of carbon. Also, the carbon-containing nickel-particle powder has a very restricted degree of forming agglomerates.
摘要:
A method of forming a multi-layer graphene includes forming a stack of a graphitizing metal catalyst layer and graphene by repeatedly performing a cycle of first forming the graphitizing metal catalyst layer on a substrate, and then forming the graphene on the graphitizing metal catalyst layer, and removing the graphitizing metal catalyst layer.
摘要:
Provided is a transparent electrode including a graphene sheet. A transparent electrode having high conductivity, low sheet resistance, and low surface roughness can be prepared by employing the graphene sheet.
摘要:
Provided are a method of preparing a graphene shell and a graphene shell prepared using the method. A first heat treatment is performed on a mixture of an organic solvent and a graphitization catalyst so as to carburize the graphitization catalyst with carbon decomposed from the organic solvent. The graphitization catalyst is in the form of particles. A second heat treatment process is performed on the carburized graphitization catalyst in an inert or reductive gas atmosphere to thereby form graphene shells on surfaces of the carburized graphitization catalyst.
摘要:
A method of forming a multi-layer graphene includes forming a stack of a graphitizing metal catalyst layer and graphene by repeatedly performing a cycle of first forming the graphitizing metal catalyst layer on a substrate, and then forming the graphene on the graphitizing metal catalyst layer, and removing the graphitizing metal catalyst layer.