Abstract:
A layer of silicon nitride above the bottom electrode and on the sidewalls of the magnetoresistive stack serves as an insulator and an etch stop during manufacturing of a magnetoresistive device. Non-selective chemical mechanical polishing removes any silicon nitride overlying a top electrode for the device along with silicon dioxide used for encapsulation. Later etching operations corresponding to formation of a via to reach the top electrode use selective etching chemistries that remove silicon dioxide to access the top electrode, but do not remove silicon nitride. Thus, the silicon nitride acts as an etch stop, and, in the resulting device, provides an insulating layer that prevents unwanted short circuits between the via and the bottom electrode and between the via and the sidewalls of the magnetoresistive device stack.
Abstract:
An MRAM device, and a process for manufacturing the device, provides improved breakdown distributions, a reduced number of bits with a low breakdown voltage, and an increased MR, thereby improving reliability, manufacturability, and error-free operation. A tunnel barrier is formed between a free layer and a fixed layer in three repeating steps of forming a metal material, interceded by oxidizing each of the metal materials. The oxidization of the third metal material is greater than the dose of the first metal, but less than the dose of the second metal. The fixed layer may include a discontinuous layer of a metal, for example, Ta, in the fixed layer between two layers of a ferromagnetic material.
Abstract:
A sensor and fabrication process are provided for forming reference layers with substantially orthogonal magnetization directions having zero offset with a small compensation angle. An exemplary embodiment includes a sensor layer stack of a magnetoresistive thin-film based magnetic field sensor, the sensor layer stack comprising a pinning layer; a pinned layer including a layer of amorphous material over the pinning layer, and a first layer of crystalline material over the layer of amorphous material; a nonmagnetic coupling layer over the pinned layer; a fixed layer over the nonmagnetic coupling layer; a tunnel barrier over the fixed layer; and a sense layer over the nonmagnetic intermediate layer. Another embodiment includes a sensor layer stack where a pinned layer including two crystalline layers separated by a amorphous layer.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
A sensor and fabrication process are provided for forming reference layers with substantially orthogonal magnetization directions having zero offset with a small compensation angle. An exemplary embodiment includes a sensor layer stack of a magnetoresistive thin-film based magnetic field sensor, the sensor layer stack comprising a pinning layer; a pinned layer including a layer of amorphous material over the pinning layer, and a first layer of crystalline material over the layer of amorphous material; a nonmagnetic coupling layer over the pinned layer; a fixed layer over the nonmagnetic coupling layer; a tunnel barrier over the fixed layer; and a sense layer over the nonmagnetic intermediate layer. Another embodiment includes a sensor layer stack where a pinned layer including two crystalline layers separated by a amorphous layer.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
Three bridge circuits (101, 111, 121), each include magnetoresistive sensors coupled as a Wheatstone bridge (100) to sense a magnetic field (160) in three orthogonal directions (110, 120, 130) that are set with a single pinning material deposition and bulk wafer setting procedure. One of the three bridge circuits (121) includes a first magnetoresistive sensor (141) comprising a first sensing element (122) disposed on a pinned layer (126), the first sensing element (122) having first and second edges and first and second sides, and a first flux guide (132) disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and on the first side of the first sensing element (122). An optional second flux guide (136) may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element (122).
Abstract:
A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
Abstract:
A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
Abstract:
A layer of silicon nitride above the bottom electrode and on the sidewalls of the magnetoresistive stack serves as an insulator and an etch stop during manufacturing of a magnetoresistive device. Non-selective chemical mechanical polishing removes any silicon nitride overlying a top electrode for the device along with silicon dioxide used for encapsulation. Later etching operations corresponding to formation of a via to reach the top electrode use selective etching chemistries that remove silicon dioxide to access the top electrode, but do not remove silicon nitride. Thus, the silicon nitride acts as an etch stop, and, in the resulting device, provides an insulating layer that prevents unwanted short circuits between the via and the bottom electrode and between the via and the sidewalls of the magnetoresistive device stack.