Abstract:
A method for compensating respiratory motion in coronary fluoroscopic images includes finding a set of transformation parameters of a parametric motion model that maximize an objective function that is a weighted normalized cross correlation function of a reference image acquired at a first time that is warped by the parametric motion model and a first incoming image acquired at a second time subsequent to the first time. The weights are calculated as a ratio of a covariance of the gradients of the reference image and the gradients of the first incoming image with respect to a root of a product of a variance of the gradients of the reference image and the variance of the gradients of the first incoming image. The parametric motion model transforms the reference image to match the first incoming image.
Abstract:
A method for three-dimensional reconstruction of a branched object from a rotational sequence of images of the branched object includes segmenting the branched object from each image of the sequence, extracting centerlines of the branched object, performing symbolic reconstruction via a stereo correspondence matching between the centerlines from different views of the sequence of images using a graph cut-based optimization, and creating a three-dimensional tomographic reconstruction of the branched object compensated for motion of the branched object between the images of the sequence.
Abstract:
The invention relates to stable antifungal liquid formulations for protecting material, containing 3-iodopropynyl butyl carbamate (IPBC) and n-octylisothiazolinone (n-OIT).
Abstract:
An airbag module including a gas generator with at least one laterally projecting fastening portion; a generator support; an airbag with an inflation opening; a cover cap; and latching elements for connecting the generator support to the cover cap. The airbag has a plate proximate to the inflation opening, the plate including an opening for the gas generator. Latching elements are provided to hold the plate and the airbag connected thereto, and to hold the fastening portion of the gas generator situated between the generator support and the plate. The plate, at least in the region of these latching elements, is larger than the external dimensioning of the folded airbag in the region of the inflation opening.
Abstract:
Exemplary methods are provided. In one exemplary method, a lower-dimension signature is generated for each of a plurality of data sets of a given dimension. Registration is performed on the lower-dimension signatures. In another exemplary method, a two-dimensional signature is generated for each of a plurality of three-dimensional volumes. Registration is performed on the two-dimensional signatures.
Abstract:
A system and method for automatically registering a three dimensional (3D) pre-operative image of an anatomical structure with intra-operative electrophysiological (EP) points of a 3D electro-anatomical (EA) image map of the anatomical structure is disclosed. The pre-operative image is displayed in a first supporting view. The intra-operative EA image map is displayed in a second supporting view. An alignment of the pre-operative image with the intra-operative map is performed by identifying at least one corresponding point on each image. The view of the pre-operative image is integrated with the EA map based on the alignment.
Abstract:
Apparatus for calibrating an ultrasound transducer providing B-scans for two-dimensional (2D) images, includes: an ultrasound probe for providing B-scans; a position sensing device, the position sensing device being attached to the ultrasound probe and operating as part of a position sensing system in cooperation with a fixed sensing control unit, for labeling the B-scans with their respective relative positions and orientations (pose); a phantom marker for being imaged by the ultrasound probe for providing measurements which together with known physical properties of the phantom marker are used to derive calibration information for relating measurement data from the position sensing device to the poses of the B-scans to construct a 3D image; and the phantom marker comprising an encoded line object with distinctive calibration characteristics indicative of position along the line object, wherein the line object is disposed in a generally circumferential manner about a common axis with the probe.
Abstract:
A module assembly for an airbag device for protecting occupants of motor vehicles includes a carrier for the assembly, an inflatable airbag packet, a flexible protective envelope, and a fixing mechanism. The airbag packet is fixed to the carrier. The airbag packet is accommodated in the flexible protective envelope. The protective enveloped can be closed off in a gastight manner. The fixing mechanism fixes the airbag packet to the carrier. The fixing mechanism includes a holding element. The holding element, which includes a securing mechanism provided on the carrier to fix the airbag packet to the carrier, extends along an edge of the airbag packet. The securing mechanism is formed integrally on the carrier and is resiliently pivotable with respect to a lateral section of the carrier. Alternatively, the securing mechanism is fixed on the carrier as a separate assembly.
Abstract:
There is provided a method for augmented reality guided instrument positioning. At least one graphics proximity marker is determined for indicating a proximity of a predetermined portion of an instrument to a target. The at least one graphics proximity marker is rendered such that the proximity of the predetermined portion of the instrument to the target is ascertainable based on a position of a marker on the instrument with respect to the at least one graphics proximity marker.
Abstract:
A method for guiding stent deployment during an endovascular procedure includes providing a virtual stent model of a real stent that specifies a length, diameter, shape, and placement of the real stent. The method further includes projecting the virtual stent model onto a 2-dimensional (2D) DSA image of a target lesion, manipulating a stent deployment mechanism to navigate the stent to the target lesion while simultaneously acquiring real-time 2D fluoroscopic images of the stent navigation, and overlaying each fluoroscopic image on the 2D DSA image having the projected virtual stent model image, where the 2D fluoroscopic images are acquired from a C-arm mounted X-ray apparatus, and updating the projection of the virtual stent model onto the fluoroscopic images whenever a new fluoroscopic image is acquired or whenever the C-arm is moved, where the stent is aligned with the virtual stent model by aligning stent end markers with virtual end markers.