Abstract:
A method for manufacturing a tower structure of a wind turbine includes printing, via an additive printing device, the tower structure of the wind turbine of a cementitious material. During printing, the method includes embedding one or more reinforcement sensing elements at least partially within the cementitious material at one or more locations. Thus, the reinforcement sensing element(s) are configured for sensing structural health of the tower structure, sensing temperature of the cementitious material, heating to control cure time of the cementitious material, and/or reinforcing the cementitious material. In addition, the method includes curing the cementitious material so as to form the tower structure.
Abstract:
A method for manufacturing a tower structure of a wind turbine includes printing, via an additive printing device, a plurality of concentric sections of the tower structure of the wind turbine. The concentric sections may be printed simultaneously from concrete, may include tensioning cables or other structural supports, and may define other support flanges or overhangs. After curing, the method may include raising an inner section of the plurality of concentric sections to a top of an adjacent outer section and joining the two sections. This process may be repeated to telescope the concentric sections and raise the tower structure.
Abstract:
In one aspect, a dual pitch bearing configuration for coupling a rotor blade to a hub of a wind turbine. The dual pitch bearing configuration including a first pitch bearing and at least one additional pitch bearing disposed axially a distance LB from the first pitch bearing. The dual pitch bearing configuration further including one or more spacers disposed between the first pitch bearing and the at least one additional pitch bearing and extending the distance LB. The dual pitch bearing disposed radially within one of a blade root of the rotor blade, a hub extension or a bearing housing and coupled thereto. The dual pitch bearing configuration minimizing moment loading on the first pitch bearing and the at least one additional pitch bearing. A wind turbine including the dual pitch bearing configuration is further disclosed.
Abstract:
A multi-material tower section for a tower mast. The tower mast comprised of at least one multi-material tower section and a method for manufacturing the section. The section comprises at least one additively manufactured wall structure comprised of at least one first material and a plurality of additively manufactured internal reinforcement structures comprised of at least one additional material and disposed therewith the at least one additively manufactured wall structure.
Abstract:
A method for manufacturing a rotor blade panel of a wind turbine includes placing one or more fiber-reinforced outer skins into a mold of the rotor blade panel. The method also includes printing and depositing, via a computer numeric control (CNC) device, a plurality of rib members that form at least one three-dimensional (3-D) reinforcement grid structure onto an inner surface of the one or more fiber-reinforced outer skins. Further, the grid structure bonds to the one or more fiber-reinforced outer skins as the grid structure is deposited. Moreover, the method includes printing at least one additional feature into the grid structure.
Abstract:
An actuation system to control clearance in a turbomachine including a shaft bearing including at least one axially displaceable thrust bearing. The axially displaceable thrust bearing configured to axially displace a rotating component relative to a stationary component to control the clearance therebetween. The system further including a plurality of actuators coupled to the at least one axially displaceable thrust bearing and configured to actuate the at least one axially displaceable thrust bearing to control the clearance. The plurality of actuators is configured to deactivate a diametrically opposed actuator in the event of an actuator failure to maintain zero moment. In a topography network, each diametrically opposed actuator pair is coupled to a single control line. In an alternate topography network, alternating actuators are coupled to a single control line. In addition, a method of actuating a thrust bearing to control clearance in a turbomachine is disclosed.
Abstract:
A method and system including a circumferential seal assembly for sealing between components within a turbine is provided. A circumferential seal assembly is disposed in a slot extending circumferentially about an inner barrel. The seal assembly includes a first shim layer and at least one additional shim layer configured in an overlapping stacked configuration so as to stagger the end portions of each of the shim segments defined by the shim layers, relative to one another and circumferentially about the seal assembly. One or more cloth layers are configured wrapping about the first shim layer and the at least one additional shim layer to define a sealing member having a first sealing surface and a second sealing surface. The assembly further including a base plate, wherein the sealing member is disposed on an upper surface of the base plate to provide for sealing engagement between the components of the turbine.
Abstract:
An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.
Abstract:
A method for manufacturing a tower structure, the method including printing and depositing, with at least one variable-width deposition nozzle of a printhead assembly, one or more layers of at least one wall element of the tower structure, the at least one wall element having an outer circumferential surface and an inner circumferential surface. The method also including forming, with the at least one variable-width deposition nozzle, at least one void into the at least one wall element. The method also including placing at least one reinforcement member within the at least one void so as to position the at least one reinforcement member closer to a neutral axis of the at least one wall element than at least one of the outer circumferential surface or the inner circumferential surface.
Abstract:
A tower structure particularly suited for a wind turbine includes a lower tower section formed of concrete and an upper tower section formed of steel. A transition system connects the upper tower section to the lower tower section, the transition system including a concrete component having a tubular wall with a base portion fixed on the lower tower section and a head portion connected to the upper tower section. The head portion extends radially outward beyond the upper tower section. A plurality of first tensioning tendons extend longitudinally at least partially through the tubular wall and are anchored to the concrete component at a top face of the head portion at locations radially outward of the upper tower section.