Abstract:
A method of forming a via to an underlying layer of a semiconductor device is provided. The method may include forming a pillar over the underlying layer using a sidewall image transfer process. A dielectric layer is formed over the pillar and the underlying layer; and a via mask patterned over the dielectric layer, the via mask having a mask opening at least partially overlapping the pillar. A via opening is etched in the dielectric layer using the via mask, the mask opening defining a first lateral dimension of the via opening in a first direction and the pillar defining a second lateral dimension of the via opening in a second direction different than the first direction. The via opening is filled with a conductor to form the via. A semiconductor device and via structure are also provided.
Abstract:
One method includes forming a gate above a semiconductor substrate, the gate comprising a gate structure and a gate cap positioned above the gate structure, forming a conductive source/drain metallization structure adjacent the gate in each of the source/drain regions and forming a recess in each of the conductive source/drain metallization structures. The method further includes forming a spacer structure that comprises recess filling portions that substantially fill the recesses and a portion that extends across the gate cap, wherein a portion of the gate cap is exposed within the spacer structure, forming an insulating material within the spacer structure and on the exposed portion of the gate cap, forming a gate contact opening that exposes a portion of an upper surface of the gate structure and forming a conductive gate contact structure (CB) in the conductive gate contact opening.
Abstract:
Techniques relate to forming an integrated circuit. Trench contacts are formed on top of at least one source and drain of an intermediate structure. An interlayer dielectric is formed on top of the intermediate structure. A trench is cut through the interlayer dielectric, through at least one of the trench contacts, down to a shallow trench isolation area. The trench is filled with a filling material. Upper contacts are formed on top of the trench contacts in the interlayer dielectric. A first metal layer pattern is patterned such that a separation is formed by a filling material width of the filling material. First metal layers are formed according to the first metal layer pattern, where tips of the first metal layers are aligned to the filling material that fills the trench, such that the tips of the first metal layers are separated by the filling material width.
Abstract:
Techniques relate to contacts for semiconductors. First gate contacts are formed on top of first gates, second gate contacts are on second gates, and terminal contacts are on silicide contacts. First gate contacts and terminal contacts are recessed to form a metal layer on top. Second gate contacts are recessed to be separately on each of the second gates. Filling material is formed on top of the recessed second gate contacts and metal layer. An upper layer is on top of the filling material. First metal vias are formed through filling and upper layers down to metal layer over first gate contacts. Second metal vias are formed through filling and upper layers down to metal layer over terminal contacts. Third metal vias are formed through filling and upper layers down to recessed second gate contacts over second gates. Third metal vias are taller than first.
Abstract:
Techniques relate to forming an integrated circuit. Trench contacts are formed on top of at least one source and drain of an intermediate structure. An interlayer dielectric is formed on top of the intermediate structure. A trench is cut through the interlayer dielectric, through at least one of the trench contacts, down to a shallow trench isolation area. The trench is filled with a filling material. Upper contacts are formed on top of the trench contacts in the interlayer dielectric. A first metal layer pattern is patterned such that a separation is formed by a filling material width of the filling material. First metal layers are formed according to the first metal layer pattern, where tips of the first metal layers are aligned to the filling material that fills the trench, such that the tips of the first metal layers are separated by the filling material width.
Abstract:
Techniques relate to forming an integrated circuit. Trench contacts are formed on top of at least one source and drain of an intermediate structure. An interlayer dielectric is formed on top of the intermediate structure. A trench is cut through the interlayer dielectric, through at least one of the trench contacts, down to a shallow trench isolation area. The trench is filled with a filling material. Upper contacts are formed on top of the trench contacts in the interlayer dielectric. A first metal layer pattern is patterned such that a separation is formed by a filling material width of the filling material. First metal layers are formed according to the first metal layer pattern, where tips of the first metal layers are aligned to the filling material that fills the trench, such that the tips of the first metal layers are separated by the filling material width.
Abstract:
A method of forming a via to an underlying layer of a semiconductor device is provided. The method may include forming a pillar over the underlying layer using a sidewall image transfer process. A dielectric layer is formed over the pillar and the underlying layer; and a via mask patterned over the dielectric layer, the via mask having a mask opening at least partially overlapping the pillar. A via opening is etched in the dielectric layer using the via mask, the mask opening defining a first lateral dimension of the via opening in a first direction and the pillar defining a second lateral dimension of the via opening in a second direction different than the first direction. The via opening is filled with a conductor to form the via. A semiconductor device and via structure are also provided.
Abstract:
A method is presented for forming equal thickness gate spacers for a CMOS (complementary metal oxide semiconductor) device, the method includes forming a PFET (p-type field effect transistor) device and an NFET (n-type field effect transistor) device each including gate masks formed over dummy gates, forming PFET epi growth regions between the dummy gates of the PFET device, forming NFET epi growth regions between the dummy gates of the NFET device, depositing a nitride liner and an oxide over the PFET and NFET epi growth regions, the nitride liner and oxide extending up to the gate masks, and removing the dummy gates and the gate masks to form HKMGs (high-k metal gates) between the PFET and NFET epi growth regions.
Abstract:
A method of concurrently forming source/drain contacts (CAs) and gate contacts (CBs) and device are provided. Embodiments include forming metal gates (PC) and source/drain (S/D) regions over a substrate; forming an ILD over the PCs and S/D regions; forming a mask over the ILD; concurrently patterning the mask for formation of CAs adjacent a first portion of each PC and CBs over a second portion of the PCs; etching through the mask, forming trenches extending through the ILD down to a nitride capping layer formed over each PC and a trench silicide (TS) contact formed over each S/D region; selectively growing a metal capping layer over the TS contacts formed over the S/D regions; removing the nitride capping layer from the second portion of each PC; and metal filling the trenches, forming the CAs and CBs.
Abstract:
One device disclosed herein includes a gate above a semiconductor substrate, the gate comprising a gate structure and a gate cap, and conductive source/drain metallization structures adjacent the gate, each of the conductive source/drain metallization structures having a front face and a recess defined in each of the conductive source/drain metallization structures. In this example, the device further includes a spacer structure comprising recess filling portions that substantially fill the recesses and a portion that extends across a portion of the upper surface of the gate cap, wherein a portion of the gate cap is exposed within the spacer structure, an insulating material within the spacer structure and on the exposed portion of the gate cap, a gate contact opening that exposes a portion of an upper surface of the gate structure, and a conductive gate contact structure in the conductive gate contact opening.