ASYMMETRIC LATERAL BIPOLAR TRANSISTOR AND METHOD

    公开(公告)号:US20230032080A1

    公开(公告)日:2023-02-02

    申请号:US17388284

    申请日:2021-07-29

    Abstract: Disclosed is a semiconductor structure that includes an asymmetric lateral bipolar junction transistor (BJT). The BJT includes an emitter, a base, a collector extension and a collector arranged side-by-side (i.e., laterally) across a semiconductor layer. The emitter, collector and collector extension have a first type conductivity with the collector extension having a lower conductivity level than either the emitter or the collector. The base has a second type conductivity that is different from the first type conductivity. With such a lateral configuration, the BJT can be easily integrated with CMOS devices on advanced SOI technology platforms. With such an asymmetric configuration and, particularly, given the inclusion of the collector extension but not an emitter extension, the BJT can achieve a relatively high collector-emitter breakdown voltage (Vbr-CEO) without a significant risk of leakage currents at high voltages. Also disclosed are method embodiments for forming such a semiconductor structure.

    LATERAL BIPOLAR JUNCTION TRANSISTOR INCLUDING A STRESS LAYER AND METHOD

    公开(公告)号:US20230065785A1

    公开(公告)日:2023-03-02

    申请号:US17555561

    申请日:2021-12-20

    Abstract: Disclosed is a semiconductor structure with a lateral bipolar junction transistor (BJT). This semiconductor structure can be readily integrated into advanced silicon-on-insulator (SOI) technology platforms. Furthermore, to maintain or improve upon performance characteristics (e.g., cut-off frequency (fT)/maximum oscillation frequency (fmax) and beta cut-off frequency) that would otherwise be negatively impacted due to changing of the orientation of the BJT from vertical to lateral, the semiconductor structure can further include a dielectric stress layer (e.g., a tensilely strained layer in the case of an NPN-type transistor or a compressively strained layer in the case of a PNP-type transistor) partially covering the lateral BJT for charge carrier mobility enhancement and the lateral BJT can be configured as a lateral heterojunction bipolar transistor (HBT). Also disclosed is a method for forming the semiconductor structure.

    Fin-based laterally diffused structure having a gate with two adjacent metal layers and method for manufacturing the same

    公开(公告)号:US11456384B2

    公开(公告)日:2022-09-27

    申请号:US16921068

    申请日:2020-07-06

    Abstract: A structure includes a semiconductor fin; a first source/drain region and a second source/drain region in the semiconductor fin; a first doping region about the first source/drain region, defining a channel region in the semiconductor fin; and a second doping region about the second source/drain region, defining a drain extension in the semiconductor fin. A gate structure is over the channel region and the drain extension. The gate structure includes a gate dielectric layer, a first metal layer adjacent a second metal layer over the gate dielectric layer, and a contiguous gate conductor over the first metal layer and the second metal layer. One of the metal layers is over the channel region and the other is over the drain extension. The metal layers may have different thicknesses and/or work functions, to improve transconductance and RF performance of an LDMOS FinFET including the structure.

Patent Agency Ranking