Abstract:
A vehicle includes a passenger compartment having a first row of seats and a second row of seats disposed behind the first row of seats. The second row of seats including a seat back configured to fold forward toward the first row of seats. The seat back of the second row of seats further including at least one headrest that is movable from a retracted position to an extended position. The at least one headrest includes a retraction mechanism configured to retract the headrest to a retracted position automatically when the seat back of the second row of seats is folded forward.
Abstract:
An aqueous or water-borne precursor for forming an anti-fouling heterophasic thermoset polymeric coating is provided. The precursor includes a fluorine-containing polyol precursor having a functionality greater than about 2 that forms a branched fluorine-containing polymer component defining a continuous phase in the anti-fouling heterophasic thermoset polymeric coating. The precursor also includes a fluorine-free precursor that forms a fluorine-free component present as a plurality of domains each having an average size of greater than or equal about 100 nm to less than or equal about 5,000 nm defining a discrete phase within the continuous phase in the anti-fouling heterophasic thermoset polymeric coating. A crosslinking agent and water are also present. An emulsifier may also be included. Methods of making anti-fouling heterophasic thermoset polymeric coatings with such precursors are also provided.
Abstract:
The knitted textiles include a knitted structure including a plurality of hollow yarns. Each hollow yarn includes a yarn body and defines a yarn hole extending through the yarn body to allow expansion of the yarn body upon inflation of each hollow yarn through the yarn hole. The knitted structure is configured to transition from an unexpanded state to an expanded state in response to the inflation of the hollow yarns through the yarn hole. The knitted structure has a first porosity in the unexpanded state, and the knitted structure has a second porosity in the expanded state. The second porosity is less than the first porosity such that a visibility through the knitted structure is greater when the knitted structure is in the unexpanded state than when the knitted structure is in the expanded state.
Abstract:
A shield assembly is employed for a friction brake used to decelerate a road wheel of a vehicle. The vehicle has a body with a first body end configured to face an incident ambient airflow, a second body end opposite of the first body end, and an underbody section spanning a distance between the first and second ends. The shield assembly includes a first shield component arranged proximate the brake and rotationally fixed relative to the vehicle body. The shield assembly also includes a second shield component operatively connected to the first shield component for shifting relative thereto. The shield assembly additionally includes an actuator employing a shape memory alloy element to shift the second shield component relative to the first shield component in response to a temperature of the brake to thereby direct at least a portion of the airflow to the brake and control temperature thereof.
Abstract:
A method of assembly includes providing a sensor having an electronic sensing unit operable to emit or receive light rays and a clear substrate attached to the electronic sensing unit. The method also includes providing a tubular protective wrap having a central orifice. The protective wrap has a transparent film layer and an interstitial layer. The interstitial layer is disposed on an interior surface of the film layer proximate the orifice. The method additionally includes disposing the protective wrap about the electronic sensing unit. The method further includes shrinking the protective wrap via application of heat such that the interstitial layer contacts at least a portion of the sensor with the film layer superposed over at least a portion of the clear substrate.
Abstract:
A fluid flow control device includes a resilient substrate translatable between a first flattened position and a second extended position, and an actuator attached to the resilient substrate. The actuator is configured for translating the resilient substrate from the first flattened position to the second extended position. The actuator is formed from a shape memory alloy transitionable between a first state and a second state in response to a change in temperature of the shape memory alloy. A fluid flow control system includes a rotor shield and the fluid flow control device attached to the rotor shield.
Abstract:
A thermal bypass valve includes a housing defining a bore along a longitudinal axis and having two inlet ports and two outlet ports; a cap disposed within the bore; a shuttle disposed within the bore and reversibly translatable towards and away from the cap along the longitudinal axis between a first fill position, a cooling position, and a bypass position; and an actuator configured for translating the shuttle along the longitudinal axis between the cooling position and the bypass position. The actuator is formed from a shape memory alloy and is transitionable between a first state and a second state in response to a temperature of the fluid.
Abstract:
An electric-vehicle power management system including a processing hardware unit and multiple modules executable by the processing hardware unit. The modules include a calendar module configured to, by way of the processing hardware unit, obtain a user itinerary indicating multiple appointment locations to be visited by a user of an electric vehicle and associated times to visit the appointment locations. The modules also include a routing module configured to, by way of the processing hardware unit, determine optional routes connecting the appointment locations indicated by the itinerary, and a vehicle-energy module configured to, by way of the processing hardware unit, predict states of charge, or changes in state of charge, for the vehicle in connection with the optional routes, yielding state-of-charge predictions. The routing module determines selected routing based on the state-of-charge predictions from the vehicle-energy module. Analogous methods and computer-readable storage devices are also provided.
Abstract:
An electric-vehicle power management system including a processing hardware unit and multiple modules executable by the processing hardware unit. The modules include a calendar module configured to, by way of the processing hardware unit, obtain a user itinerary indicating multiple appointment locations to be visited by a user of an electric vehicle and associated times to visit the appointment locations. The modules also include a routing module configured to, by way of the processing hardware unit, determine optional routes connecting the appointment locations indicated by the itinerary, and a vehicle-energy module configured to, by way of the processing hardware unit, predict states of charge, or changes in state of charge, for the vehicle in connection with the optional routes, yielding state-of-charge predictions. The routing module determines selected routing based on the state-of-charge predictions from the vehicle-energy module. Analogous methods and computer-readable storage devices are also provided.
Abstract:
An automated recharging system includes an electric vehicle and a charging apparatus. The electric vehicle includes a rechargeable energy storage system (RESS), a charging receptacle, and a first controller configured to monitor the status of the electric vehicle and the charge level of the RESS. The charging apparatus includes a charging plug configured to mate with the charging receptacle to recharge the RESS, and a movement mechanism to substantially align the charging plug with and insert it into the charging receptacle. The charging apparatus also includes a second controller to control the movement mechanism and to communicate with the first controller. The electric vehicle further includes an array of radio-frequency identification (RFID) tags arranged around the charging receptacle, and the charging apparatus further includes a RFID reader configured to read the RFID tags to determine the location of the charging plug in relation to the charging receptacle.