Abstract:
Methods are provided for intelligently overriding a driving automation system for a vehicle. The method first identifies a road feature ahead of the vehicle that requires overriding the engaged driving automation system. A deceleration zone is calculated for the vehicle prior to reaching the road feature and a transition zone is identified for the vehicle to pass through while under driver control. The driver is signaled to disengage the driving automation system as the vehicle approaches the deceleration zone and take control of the vehicle. If the driver fails to take control, the vehicle stops and shuts off the driving automation system. If the driver takes control, the vehicle passes through the transition zone and the driving automation system re-engages once the vehicle exits the transition zone.
Abstract:
An autonomous vehicle includes an automated driving system configured to automatically control vehicle steering, acceleration, and braking during a drive cycle without operator intervention. The vehicle additionally includes a wireless communication system configured to communicate with a remote communication device. The vehicle further includes a controller configured to communicate vehicle characteristics data via the wireless communication system. The vehicle characteristics data include a vehicle status identifier indicating automated driving system control of the vehicle. The controller is further configured to, in response to a remote override request from a remote communication device, command the automated driving system to perform a minimal risk condition maneuver to stop the vehicle.
Abstract:
Haptic feedback systems, vehicle seat assemblies, and vehicles are provided. The haptic feedback system includes a bottom seat member, a first motor, and a second motor. The bottom seat member includes a seat pan with a first side, a second side, a first bolster, and a second bolster. The first bolster is positioned on the first side of the seat pan and the second bolster is positioned on the second side of the seat pan, wherein the first bolster and the second bolster include a resilient material. The first motor supported by the resilient material of the first bolster and the second motor is supported by the resilient material of the second bolster.
Abstract:
Methods and control systems are provided for automatically controlling operation of a vehicle. In one embodiment, the control system includes an exterior sensor for sensing the environment outside the vehicle. A processor is in communication with the exterior sensor and configured to calculate a driving plan of the vehicle based at least partially on the sensed environment outside the vehicle. The processor is also configured to calculate a confidence level of the driving plan of the vehicle based at least partially on the sensed environment around the vehicle. The control system also includes a display in communication with the processor and configured to receive data from the processor and display a representation of at least one of the driving plan and the confidence level.
Abstract:
A method and system for driver attention management system may include means for closed-loop diagnostics. A convenience message may alert a driver of an item of interest to the driver. A sensor may detect the driver's response to the convenience message. Based on the response to the convenience message, the characteristics of an attentive response from the driver may be determined. The determined attentive response may be used by a driver attention management system. The driver attention management system may be able to diagnose errors in the sensors that are used in the driver attention management system. The driver attention management system may also be able to determine whether a driver is exercising sufficient supervisory control of a vehicle by determining whether the driver is attentively responding to prompts provided by the driver attention management system. The driver attention management system may be used in an autonomous or semi-autonomous driving system.
Abstract:
A method for displaying a captured image on a display device. A scene is captured by at least one vision-based imaging device. A virtual image of the captured scene is generated by a processor using a camera model. A view synthesis technique is applied to the captured image by the processor for generating a de-warped virtual image. A dynamic rearview mirror display mode is actuated for enabling a viewing mode of the de-warped image on the rearview mirror display device. The de-warped image is displayed in the enabled viewing mode on the rearview mirror display device.
Abstract:
A vehicle imaging system includes an image capture device capturing an image exterior of a vehicle. The captured image includes at least a portion of a sky scene. A processor generates a virtual image of a virtual sky scene from the portion of the sky scene captured by the image capture device. The processor determines a brightness of the virtual sky scene from the virtual image. The processor dynamically adjusts a brightness of the captured image based the determined brightness of the virtual image. A rear view mirror display device displays the adjusted captured image.