Abstract:
A clutch assembly having a first clutch member, a second clutch member axially slidable in a first axial direction to engage the first clutch member and in a second axial direction to disengage from the first clutch member, a spring biasing the second clutch member in one of the axial directions, a piston actuatable to move the second clutch member in the other of the axial directions, thereby overcoming a biasing force of the spring, and a latching device to selectively lock the piston in at least one of the first axial direction and second axial direction. The latching device includes a selectively retractable locking pin. The piston has an external surface defining a slot to receive the locking pin, thereby locking the piston in the first position or the second position. A method of operating the clutch assembly is provided.
Abstract:
A fluid circuit includes a device, a cooler, and a valve. The valve includes a housing, a sealing member, a biasing device, and an actuator. The sealing member moves inside the housing between a first position and a second position. The actuator includes a smart material that is activated when the temperature of a fluid inside the housing exhibiting at least a first temperature, causing the sealing member to move to the second position. The smart material is deactivated when the fluid is a sufficient number of degrees less than the first temperature, causing the sealing member to move to the first position. The fluid flows from the housing to the device and then to the housing when the sealing member is in the first position. The fluid flows from the housing to the cooler and then to the device when the sealing member is in the second position.
Abstract:
A speed ratio containment process limits the speed ratio of a variator for a CVT for a motor vehicle when rolling backward by commanding a speed ratio that is higher than the actual speed ratio in an overdrive direction. Accordingly, the actual speed ratio moves to a lowest limit, which provides maximum torque when a driver of the motor vehicle steps on the accelerator pedal to resume forward motion of the motor vehicle.
Abstract:
A hydraulic control system includes a hydraulic pump driven by an electric motor, a solenoid valve having an output that controls the positions of a pressure regulator valve and a third, stator shift valve. The solenoid valve is a normally high, variable force solenoid valve which provides a control signal to the second and third valves. The second, pressure regulator valve is a multiple port valve which controls hydraulic fluid flow both to a transmission oil cooler (ATOC) and to an exhaust port, thereby maintaining a desired system pressure. The third, stator shift valve is also a multiple port valve and it controls fluid flow to the stator of the electric pump motor to provide cooling and to a dog clutch of the transmission to disengage it.
Abstract:
A hydraulic control system for a transmission is provided. The hydraulic control system includes a source of pressurized hydraulic fluid that communicates with an electronic transmission range selection (ETRS) subsystem. In one example, the ETRS subsystem includes an ETRS control valve, a park servo that controls a park mechanism, a plurality of solenoids, and a park inhibit solenoid assembly. In another example, the ETRS subsystem includes an ETRS control valve, an ETRS enable valve, a park servo that controls a park mechanism, a plurality of solenoids, and a park inhibit solenoid assembly.
Abstract:
A hydraulic control system for a transmission includes a source of pressurized hydraulic fluid, a park servo connected to a park mechanism, the park servo having a park side, an out-of-park side, and a biasing member disposed on the park side. A first valve assembly includes a first inlet port in fluid communication with the source of pressurized hydraulic fluid, a first outlet port, and a first valve for selectively allowing fluid communication between the first inlet port and the first outlet port. A second valve assembly includes a second inlet port in direct fluid communication downstream of the first valve assembly, a second outlet port in direct fluid communication with the out-of-park side of the park servo, and a second valve moveable between an out-of-park position and a park position.
Abstract:
A vehicle includes an engine and transmission assembly, the latter having a stationary member, a plurality of gear sets, an input member, a friction clutch, a binary clutch assembly, and a transmission control module (TCM). The binary clutch assembly includes a freewheeling element and a binary device such as a selectable one way clutch or dog clutch. The TCM selectively delays a release of the binary clutch assembly via a binary clutch indicator method by detecting a requested shift of the transmission requiring an engagement of the friction clutch, and commanding the release of the binary clutch assembly. The TCM determines an amount of slip across the binary clutch assembly and executes the requested shift of the transmission only when the determined amount of slip exceeds a calibrated slip threshold. Slip may be measured or calculated.
Abstract:
A system for absorbing vibration created by operation of an engine of the present invention includes a first plate driven by an engine shaft and a torque transmitting device for transferring torque from the engine shaft to a transmission input shaft. The system includes a first vibration absorber and a second vibration absorber. The first vibration absorber includes at least one selectively moveable mass. The second vibration absorber includes at least one biasing member and generally opposing ends. The first vibration absorber is configured to absorb vibrations created at a first harmonic of the engine and the second vibration absorber is configured to absorb vibrations created at multiple harmonics of the engine.
Abstract:
An electrical contactor module includes a pair of contactor assemblies each having an input contact, an output contact spaced apart from the input contact, and a linear solenoid disposed proximate the input and output contacts. Each linear solenoid has a housing, a plunger disposed within the housing so as to permit axial displacement of the plunger between an open position in which an end of the plunger is spaced apart from the input and output contacts and a closed position in which the end mechanically contacts and electrically couples the input and output contacts, a spring for biasing the plunger in the open position, and a coil within the housing for urging the plunger from the open position to the closed position along a linear direction. The contactor assemblies are fastened and arranged within an enclosure, with the linear directions for the contactor assemblies pointing in generally opposite directions.
Abstract:
A parking actuator assembly for an automatic transmission includes a park pawl that is rotatable between an in-park position and an out-of-park position. An actuator assembly is configured to be moved between a park-actuated position and a park-disengaged position, the actuator assembly being configured to rotate the park pawl into the in-park position when the actuator is moved into the park-actuated position. An actuator rod is slidably coupled to the actuator assembly. In some forms, the actuator assembly remains in contact with the park pawl from the park-actuated position to the park-disengaged position. In some forms, at least one latching solenoid is included, and the latching solenoid(s) as well as a park actuator motor may be disposed within a main transmission system. A verification sensor may be included to determine the position.