Abstract:
A mechanical structure is disposed in a chamber, at least a portion of which is defined by the encapsulation structure. A first method provides a channel cap having at least one preform portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. A second method provides a channel cap having at least one portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. The at least one portion is fabricated apart from the electromechanical device and thereafter affixed to the electromechanical device. A third method provides a channel cap having at least one portion disposed over or in at least a portion of the anti-stiction channel to seal an anti-stiction channel, at least in part. The at least one portion may comprise a wire ball, a stud, metal foil or a solder preform. A device includes a substrate, an encapsulation structure and a mechanical structure. An anti-stiction layer is disposed on at least a portion of the mechanical structure. An anti-stiction channel is formed in at least one of the substrate and the encapsulation structure. A cap has at least one preform portion disposed over or in at least a portion of the anti-stiction channel to seal the anti-stiction channel, at least in part.
Abstract:
A dual-axis tuning fork gyroscope includes four open-ended tuning forks arranged coplanarly in two opposite pairs, a first pair of open-ended tuning forks being arranged opposite one another along a first axis, a second pair of open-ended tuning forks being arranged opposite one another along a second axis, the first axis and the second axis being perpendicular to one another. The four open-ended tuning forks are mechanically coupled together so that all four tuning forks vibrate in the same manner in terms of frequency and phase.
Abstract:
There are many inventions described and illustrated herein, as well as many aspects and embodiments of those inventions. In one aspect, the present invention is directed to a resonator architecture including a plurality of in-plane vibration microelectromechanical resonators (for example, 2 or 4 resonators) that are mechanically coupled to provide, for example, a differential signal output. In one embodiment, the present invention includes four commonly shaped microelectromechanical tuning fork resonators (for example, tuning fork resonators having two or more rectangular-shaped or square-shaped tines). Each resonator is mechanically coupled to another resonator of the architecture. For example, each resonator of the architecture is mechanically coupled to another one of the resonators on one side or a corner of one of the sides. In this way, all of the resonators, when induced, vibrate at the same frequency.
Abstract:
A MEMS device, e.g., a flexible MEMS pressure sensor, is formed by disposing a sacrificial layer, such as photoresist, on a substrate. A first flexible support layer is disposed on the substrate, and a first conductive layer is disposed over a portion of the first support layer. A liquid or gel separator, e.g., silicone oil, is disposed on an internal region of the first conductive layer. A second flexible support layer encapsulates the first conductive layer and the separator. A second conductive layer disposed over the second support layer at least partially overlaps the first conductive layer and forms a parallel plate capacitor. A third flexible support layer encapsulates the second conductive layer and second support layer. Soaking the sensor in hot water releases the sensor from the sacrificial layer.
Abstract:
A MEMS device structure including a lateral electrical via encased in a cap layer and a method for manufacturing the same. The MEMS device structure includes a cap layer positioned on a MEMS device layer. The cap layer covers a MEMS device and one or more MEMS device layer electrodes in the MEMS device layer. The cap layer includes at least one cap layer electrode accessible from the surface of the cap layer. An electrical via is encased in the cap layer extending across a lateral distance from the cap layer electrode to the one or more MEMS device layer electrodes. An isolating layer is positioned around the electrical via to electrically isolate the electrical via from the cap layer.
Abstract:
In one embodiment, a method of forming an out-of-plane electrode includes providing an oxide layer above an upper surface of a device layer, providing a first cap layer portion above an upper surface of the oxide layer, etching a first electrode perimeter defining trench extending through the first cap layer portion and stopping at the oxide layer, depositing a first material portion within the first electrode perimeter defining trench, depositing a second cap layer portion above the first material portion, vapor releasing a portion of the oxide layer, depositing a third cap layer portion above the second cap layer portion, etching a second electrode perimeter defining trench extending through the second cap layer portion and the third cap layer portion, and depositing a second material portion within the second electrode perimeter defining trench, such that a spacer including the first material portion and the second material portion define out-of-plane electrode.
Abstract:
In one embodiment, a method of forming an insulating spacer includes providing a base layer, providing an intermediate layer above an upper surface of the base layer, etching a first trench in the intermediate layer, depositing a first insulating material portion within the first trench, depositing a second insulating material portion above an upper surface of the intermediate layer, forming an upper layer above an upper surface of the second insulating material portion, etching a second trench in the upper layer, and depositing a third insulating material portion within the second trench and on the upper surface of the second insulating material portion.
Abstract:
In one embodiment, a method of forming an out-of-plane electrode includes providing an oxide layer above an upper surface of a device layer, providing a first cap layer portion above an upper surface of the oxide layer, etching a first electrode perimeter defining trench extending through the first cap layer portion and stopping at the oxide layer, depositing a first material portion within the first electrode perimeter defining trench, depositing a second cap layer portion above the first material portion, vapor releasing a portion of the oxide layer, depositing a third cap layer portion above the second cap layer portion, etching a second electrode perimeter defining trench extending through the second cap layer portion and the third cap layer portion, and depositing a second material portion within the second electrode perimeter defining trench, such that a spacer including the first material portion and the second material portion define out-of-plane electrode.
Abstract:
A MEMS device structure including a lateral electrical via encased in a cap layer and a method for manufacturing the same. The MEMS device structure includes a cap layer positioned on a MEMS device layer. The cap layer covers a MEMS device and one or more MEMS device layer electrodes in the MEMS device layer. The cap layer includes at least one cap layer electrode accessible from the surface of the cap layer. An electrical via is encased in the cap layer extending across a lateral distance from the cap layer electrode to the one or more MEMS device layer electrodes. An isolating layer is positioned around the electrical via to electrically isolate the electrical via from the cap layer.
Abstract:
A method of etching a device in one embodiment includes providing a silicon carbide substrate, forming a silicon nitride layer on a surface of the silicon carbide substrate, forming a silicon carbide layer on a surface of the silicon nitride layer, forming a silicon dioxide layer on a surface of the silicon carbide layer, forming a photoresist mask on a surface of the silicon dioxide layer, and etching the silicon dioxide layer through the photoresist mask.