Abstract:
What follows is a description of various exemplary embodiments of a fuel injection system for an internal combustion engine with exhaust gas recycling controlled by a throttle valve situated in the suction tube of the system. The throttle valve is in turn controlled by a servomotor having a displaceable piston connected to the throttle valve. The piston is displaceable against a variable restoring force exerted against it and produces displacements of the throttle valve between two positions, one corresponding to a fully opened position of the throttle valve and closed exhaust gas recycling line, and the other corresponding to a substantially closed throttle valve.
Abstract:
A fuel injection system for externally ignited internal combustion engines in which a fuel metering and distributing valve is controlled by an air sensing element disposed in the air suction tube of the engine and by structure which is adapted to alter the restoring force exerted on the air sensing element through the fuel metering and distributing valve. The noted structure includes a control pressure conduit, a pressure control valve connected to the control pressure conduit and a further conduit for connecting the pressure control valve to the suction tube of the engine downstream of the butterfly valve. With this structure it is possible to alter the restoring force mentioned above so that a momentarily enriched fuel-air mixture is achieved when the butterfly valve is suddenly opened and so that a momentarily weakened fuel-air mixture is achieved when the butterfly valve is suddenly closed.
Abstract:
The invention is directed to an arrangement for controlling the engine speed and especially the idle engine speed of an engine of a motor vehicle. The pregiven idle engine speed desired value is controlled in dependence upon the road speed of the motor vehicle so that this desired value becomes greater with increasing road speed.
Abstract:
A fuel injection pump for internal combustion engines having a hydraulic control mechanism includes a control cylinder with a control piston actuating a control member, a hydraulic work chamber and one switching valve each for an input and an output controlled by a valve control unit. The inflow to and return from the work chamber is provided with the control valves in order to shut down the engine upon a shutoff or a malfunction in the hydraulic control mechanism. The fuel feed pump is electrically driven, and the hydraulic work chamber communicates with the fuel tank via a relief device. The supply of current to the valve control unit and the feed pump is switched on and off, along with the rest of the current supply to the engine, via a driving switch. Additionally, the valve control unit is embodied such that upon the appearance of a persistent control deviation of the control member, the valve control unit shuts off the feed pump. The relief device includes various variant embodiments operative upon shutoff of the current supply or the occurrence of a malfunction and enables the restoration of the control mechanism to its zero or stopping position.
Abstract:
A nozzle holder for internal combustion engines is proposed, in which a sleeve can be secured in the cylinder head by means of a tightening nut. The sleeve protects the portion of the nozzle which protrudes into the combustion chamber from thermal effects. Ease of serviceability is attained in that when the nozzle holder is rotated out of the cylinder head, the sleeve is simultaneously removed, without requiring additional hand operations.
Abstract:
The invention is directed to a safety arrangement for an internal combustion engine having self-ignition where, in the sense of an overall system monitoring, specific signals relating to the operating conditions of the internal combustion engine are continuously monitored. These signals are indicative, for example, of the position of the throttle pedal, the computed rack-travel nominal or desired value, and the rotational speed. The monitored signals are processed and a corrected rack-travel nominal value is generated by means of a minimum-value selection circuit. The corrected rack-travel nominal value signal generated in this manner is fed to the rack controller of an EDC unit. At the same time, a deviation in rack travel is determined utilizing the corrected rack travel nominal value in combination with an actual-value signal of the rack travel fed back from the rack-travel sensor. The signal indicative of actual rack travel also serves for a comparison with the upper and lower limits of the rack-travel sensor voltage; and, depending on the error condition occurring, either the output stage of the rack controller is de-energized and/or the fuel-injection pump is simultaneously shut off by means of an electrical shutoff valve (ELAB); or, a decision for an emergency operation is made.
Abstract:
An apparatus is described for the removal of solid components from the exhaust gas of internal combustion engines, in particular for the removal of soot components from the exhaust gases of self-igniting combustion engines. Under the influence of electrostatic fields, the solid components are diverted and carried to a fresh-air current flowing toward the intake side of the engine. This recirculation of the solid components may be effected either by means of the recirculation of a partial flow of the exhaust gas which has been enriched with solid components, in which case the solid components are deflected into this partial flow in an electrostatic field, or these solid components may be guided into the fresh-air current aspirated by the engine, in this case with the cooperation of a mechanical transport means and electrostatic bonding forces.
Abstract:
A fuel injection nozzle for internal combustion engines, in which the valve needle together with the valve seat of the nozzle body forms an electric switch which by its opening and closing indicates the injection onset and the injection duration. A spring-elastic conductive element is disposed inside the closing spring and connects the attachment piece with the valve needle.
Abstract:
An apparatus for fixing the composition of the gas content and the degree of filling of cylinders in an internal combustion engine having autoignition, including a fuel metering device to which a signal dependent at least on the position of the driving pedal can be delivered and having an exhaust gas feedback control element in the air intake line as well as an apparatus for controlling the exhaust feedback rate. The apparatus includes measurement value transducers for the at least indirectly detectable total cylinder filling and the ratio of fresh air to exhaust gas or the air ratio pertaining to the aspirated fresh air and/or the fuel metering is influenced among others in accordance with this measurement value. The detection of the total cylinder filling can be accomplished indirectly by using measurement techniques for detecting pressure and temperature in the intake manifold. Besides using pressure transducers, whose output signal may be corrected in accordance with temperature, if desired, it is also possible to use an arrangement for measurement of the total gas quantity between the exhaust feedback point and the inlet valves. The object of the proposed apparatus is to set the mixture of fresh air and exhaust gas which is optimal at any given time with respect to toxic substances in the exhaust, by means of processing as many observable influencing factors as possible, and in particular by processing the total cylinder filling, which is of significance especially in terms of the limitation of solids in the exhaust which is expected to be made a legal requirement. Alternatively, the signal for the total cylinder filling can be used in order to adjust a suitably controllable supercharger via a governor in such a manner that the total cylinder filling (charge quantity) is constantly controlled. Thus, under altered environmental conditions, the optimal air ratio for normal conditions pertaining to the aspirated fresh air can be maintained with respect to toxic substances in the exhaust.
Abstract:
A device which serves to activate an adjusting member in dependence on load, in which especially the cross section and/or the pressure differential of an exhaust gas return line which is provided in the intake manifold of an internal combustion engine can be altered in dependence on the load. A fuel injection pump of a known construction is associated with the internal combustion engine, and includes a rate adjusting element, the position of which serves as the control value for the load. This control value, together with a subsequently arranged amplifier device for the control value, produces an adjusting value for the activation of the adjusting element.