Abstract:
A drive system for a pump includes a housing and a fluid displacer and a reciprocator configured to mechanically displace the fluid displacer through respective suction strokes. The housing and fluid displacer define an internal pressure chamber configured to be filled with a working fluid having a charge pressure. The internal pressure chamber is configured such that the working fluid exerts the charge pressure on the fluid displacer during both the suction stroke and a pressure stroke of the fluid displacer.
Abstract:
A battery powered fluid sprayer includes a shelter that the battery is mounted in to provide power to the electric components of the sprayer. The shelter protects the battery from falling fluid droplets. The shelter extends above the battery and projects outward laterally and longitudinally to protect the battery. The battery can move vertically downward to dismount from the fluid sprayer.
Abstract:
A drive system for a pump includes a housing, first and second fluid displacement members, a solenoid disposed within the housing, and a reciprocating member configured to be driven by the solenoid. The reciprocating member is connected to the first and second fluid displacement members and is configured to mechanically displace the first and second fluid displacement members.
Abstract:
A drive system for a pump includes a first housing defining an internal pressure chamber, a working fluid disposed within and charging the internal pressure chamber, a second housing disposed within the first housing, a solenoid disposed within the second housing, a reciprocating member slidably disposed within the solenoid, a pull housing integral with a first end of the reciprocating member, the pull housing defining a pull chamber, a pull disposed within the pull chamber, and a fluid displacement member coupled to the pull.
Abstract:
A method of displacing fluid includes pulling a pump displacement member through a suction stroke with a pull, the pull configured to transmit only tensile forces to the fluid displacement member. A working fluid disposed in an internal pressure chamber drive the fluid displacement member through a pumping stroke. The pull is prevented from transmitting any compressive forces to the fluid displacement member, such that the pull does not drive the fluid displacement member through the pumping stroke.
Abstract:
A drive system for a pump includes a first housing defining an internal pressure chamber, a working fluid disposed within and charging the internal pressure chamber, a second housing having a first and second pumping chambers and an aperture through an end of the second housing, a reciprocating member slidably disposed between the first pumping chamber and the second pumping chamber, a pull housing integral with the reciprocating member and projecting through the aperture, a first sealing member disposed around a circumference of the reciprocating member, a second sealing member disposed around a circumference of the aperture, the pull housing defining a pull chamber, a pull disposed within the pull chamber, and a fluid displacement member coupled to the pull.
Abstract:
A double displacement pump includes an inlet manifold, an outlet manifold, a first fluid cavity between the inlet manifold and the outlet manifold, a second fluid cavity between the inlet manifold and the outlet manifold, and a drive system that includes a housing defining an internal pressure chamber, a piston disposed within the internal pressure chamber and having a first and second pull chambers and a central slot for receiving a drive, a first pull with a free end slidably secured within the first pull chamber and a second pull with a free end slidably secured within the second pull chamber, and a first fluid displacement member coupled to the first pull and a second fluid displacement member coupled to the second pull.