摘要:
The present invention relates to a process for converting aliphatic hydrocarbons having 1 to 4 carbon atoms to aromatic hydrocarbons, comprising the steps of: a) converting a reactant stream E which comprises at least one aliphatic hydrocarbon having 1 to 4 carbon atoms in the presence of a catalyst under nonoxidative conditions to a product stream P comprising aromatic hydrocarbons and hydrogen, and b) electrochemically removing at least some of the hydrogen formed in the conversion from the product stream P by means of a gas-tight membrane-electrode assembly which has at least one selectively proton-conducting membrane and, on each side of the membrane, at least one electrode catalyst, at least some of the hydrogen being oxidized to protons over the anode catalyst on the retentate side of the membrane, and the protons, after passing through the membrane, on the permeate side over the cathode catalyst, are partly, in b1) reduced to hydrogen with application of a voltage, and partly, in b2) reacted with oxygen to give water to generate electrical power, the oxygen originating from an oxygen-comprising stream O which is contacted with the permeate side of the membrane.
摘要翻译:本发明涉及一种将具有1至4个碳原子的脂族烃转化成芳族烃的方法,包括以下步骤:a)在包含至少一种具有1至4个碳原子的脂族烃的反应物流E的存在下, 在非氧化条件下的催化剂与包含芳族烃和氢的产物流P,以及b)通过气密膜电极组件电化学去除从产物流P的转化中形成的至少一些氢, 至少一个选择性质子传导膜,并且在膜的每一侧上具有至少一个电极催化剂,至少一些氢被氧化成在膜的滞留侧上的阳极催化剂上的质子和通过后的质子 通过膜,在阴极催化剂上的渗透侧,部分地,b1)通过施加电压而还原为氢,并且部分地,i n b2)与氧反应以产生水以产生电力,所述氧源来自与所述膜的渗透侧接触的含氧流O。
摘要:
The invention relates to a process for the electrochemical separation of hydrogen from a hydrogen-comprising reaction mixture R by means of a gastight membrane-electrode assembly comprising at least one selectively proton-conducting membrane and at least one electrode catalyst on each side of the membrane, where at least part of the hydrogen present in the reaction mixture R is oxidized to protons over the anode catalyst on the retentate side of the membrane and the protons are, after passing through the membrane to the permeate side,I reduced to hydrogen over the cathode catalyst and/orII reacted with oxygen over the cathode catalyst to form water, with the oxygen originating from an oxygen-comprising stream O which is brought into contact with the permeate side of the membrane,and also a reactor equipped with at least one membrane-electrode assembly.
摘要:
The present invention relates to salts comprising novel aryl-alkyl-substituted imidazolium and triazolium cations and arbitrary anions. The invention further relates to methods for the chemical conversion and separation of substances, comprising the salts according to the invention as solvents, solvent additives, or extraction means, and to the use of the salts according to the invention, for example as solvents or solvent additives in chemical reactions, as extracting agents for the separation of substances, or for storing hydrogen. According to the invention, the object is achieved by salts of the general formula (I), where X— is an anion, Y1 and Y2 are CH, or Y1 is CH and Y2 is N, or Y1 is N and Y2 is CH, n is a number from 1 up to an including 18, Q is selected from —CH3, —OH, —ORx, —S03H, —S03Rx, —COOH, —COORx, —CORx, NH2, —NHRx, —N(Rx)2, and —CH(Rx)2, Z is H or Rx, R1, R2, R3, R4 and R5 independently from each other are —H, -halogen, —N02, —NH2, —NHRx, —N(Rx)2, —Rx, —COORx or —ORx, where Rx is an optionally substituted and/or branched C1 to C18-alkyl group, excluding compounds of the general formula (I), where Y1 and Y2 are CH and R1, R2, R3, R4 and R5 are H, excluding compounds of the general formula (I), where Y1 and Y2 are CH, R1=R3=R5=CH3 is true, n=1, 2, 6 and Q=CH3 is true, excluding compounds of the general formula (I), where Y1 is CH and Y2 is N, R1, R2, R3, R4 and R5 are H, n=1 is true, and Q=CH3 is true, and excluding compounds of the general formula (I), where Y1 and Y2 are CH, R1, R2, R4, R5=H is true, R3=ORx is true, and Rx is a hydrocarbon having 3 or 12 carbon atoms.
摘要:
The invention relates to a process for the electrochemical separation of hydrogen from a hydrogen-comprising reaction mixture R by means of a gastight membrane-electrode assembly comprising at least one selectively proton-conducting membrane and at least one electrode catalyst on each side of the membrane, where at least part of the hydrogen present in the reaction mixture R is oxidized to protons over the anode catalyst on the retentate side of the membrane and the protons are, after passing through the membrane to the permeate side, I reduced to hydrogen over the cathode catalyst and/or II reacted with oxygen over the cathode catalyst to form water, with the oxygen originating from an oxygen-comprising stream O which is brought into contact with the permeate side of the membrane, and also a reactor equipped with at least one membrane-electrode assembly.
摘要:
The invention relates to a process for producing a particulate, Si-bonded fluidized-bed catalyst having improved abrasion resistance, which comprises the steps I. provision of an aqueous suspension comprising zeolite particles, II. addition of a silicone resin mixture comprising one or more hydrolyzable silicone resin precondensates and mixing of the aqueous suspension and the silicone resin mixture, III. spray drying of the mixture obtained from step II, with the mixture being homogenized before spray drying, and IV. calcination of the spray-dried fluidized-bed catalyst obtained from step III, and an Si-bonded fluidized-bed catalyst which can be produced by this process and also its use for the nonoxidative dehydroaromatization of C1-C4-aliphatics.
摘要:
The present invention relates to salts comprising novel aryl-alkyl-substituted imidazolium and triazolium cations and arbitrary anions. The invention further relates to methods for the chemical conversion and separation of substances, comprising the salts according to the invention as solvents, solvent additives, or extraction means, and to the use of the salts according to the invention, for example as solvents or solvent additives in chemical reactions, as extracting agents for the separation of substances, or for storing hydrogen. According to the invention, the object is achieved by salts of the general formula (I), where X— is an anion, Y1 and Y2 are CH, or Y1 is CH and Y2 is N, or Y1 is N and Y2 is CH, n is a number from 1 up to an including 18, Q is selected from —CH3, —OH, —ORx, —S03H, —S03Rx, —COOH, —COORx, —CORx, NH2, —NHRx, —N(Rx)2, and —CH(Rx)2, Z is H or Rx, R1, R2, R3, R4 and R5 independently from each other are —H, -halogen, —N02, —NH2, —NHRx, —N(Rx)2, —Rx, —COORx or —ORx, where Rx is an optionally substituted and/or branched C1 to C18-alkyl group, excluding compounds of the general formula (I), where Y1 and Y2 are CH and R1, R2, R3, R4 and R5 are H, excluding compounds of the general formula (I), where Y1 and Y2 are CH, R1=R3=R5=CH3 is true, n=1, 2, 6 and Q=CH3 is true, excluding compounds of the general formula (I), where Y1 is CH and Y2 is N, R1, R2, R3, R4 and R5 are H, n=1 is true, and Q=CH3 is true, and excluding compounds of the general formula (I), where Y1 and Y2 are CH, R1, R2, R4, R5=H is true, R3=ORx is true, and Rx is a hydrocarbon having 3 or 12 carbon atoms.
摘要:
The present invention relates to a process for converting aliphatic hydrocarbons having 1 to 4 carbon atoms to aromatic hydrocarbons in the presence of a catalyst under nonoxidative conditions, wherein at least some of the hydrogen formed in the conversion electrochemically removed is by means of a gas-tight membrane-electrode assembly.
摘要:
The invention relates to a process for producing a particulate, Si-bonded fluidized-bed catalyst having improved abrasion resistance, which comprises the steps I. provision of an aqueous suspension comprising zeolite particles, II. addition of a silicone resin mixture comprising one or more hydrolyzable silicone resin precondensates and mixing of the aqueous suspension and the silicone resin mixture, III. spray drying of the mixture obtained from step II, with the mixture being homogenized before spray drying, and IV. calcination of the spray-dried fluidized-bed catalyst obtained from step III, and an Si-bonded fluidized-bed catalyst which can be produced by this process and also its use for the nonoxidative dehydroaromatization of C1-C4-aliphatics.
摘要:
The present invention relates to a process for nonoxidatively dehydroaromatizing a reactant stream comprising C1-C4-aliphatics, comprising the steps of I. feeding reactant stream E into a reaction zone 1, converting reactant stream E under nonoxidative conditions in the presence of a particulate catalyst to a product stream P comprising aromatic hydrocarbons and discharging product stream P from reaction zone 1, II. transferring the catalyst with reduced activity as a result of deposited coke into a reaction zone 2, III. at least partly regenerating the catalyst with supply of a hydrogen-comprising gas stream H in a reaction zone 2, at least some of the coke deposited being converted to methane to form a methane-comprising gas stream M which is fed at least partly to reaction zone 1, IV. discharging the catalyst from reaction zone 2 and V. recycling at least a portion of the discharged catalyst into reaction zone 1, reaction zone 1 and reaction zone 2 being arranged spatially adjacent to one another in the same reactor.
摘要:
The invention relates to a process for converting aliphatic hydrocarbons having from 1 to 4 carbon atoms into aromatic hydrocarbons, which comprises the steps: a) reaction of a feed stream E comprising at least one aliphatic hydrocarbon having from 1 to 4 carbon atoms in the presence of a catalyst under nonoxidative conditions to give a product stream P comprising aromatic hydrocarbons and hydrogen and b) electrochemical removal of at least part of the hydrogen formed in the reaction from the product stream P by means of a gastight membrane-electrode assembly comprising at least one selectively proton-conducting membrane and at least one electrode catalyst on each side of the membrane, where at least part of the hydrogen is oxidized to protons over the anode catalyst on the retentate side of the membrane and the protons are, after passing through the membrane on the permeate side, reacted with oxygen to form water over the cathode catalyst, with the oxygen originating from an oxygen-comprising stream O which is brought into contact with the permeate side of the membrane.