摘要:
The invention is regarding to solid-state imaging device. A solid-state imaging device consistent with the present invention includes, a plurality of unit cells on a semiconductor substrate of a first conductivity type, each unit cell including a photoelectric conversion unit comprising a photodiode having a diffusion layer of a second conductivity type and a signal scanning circuit unit; a trench isolation region for isolating the photoelectric conversion unit from the signal scanning circuit unit, the trench isolation region being formed in the semiconductor substrate;a first element-isolating diffusion layer of the first conductivity type formed under a bottom face of the trench isolation region down to a position deeper than the diffusion layer of the photodiode from the surface of the semiconductor substrate.
摘要:
In a photodiode used in a pixel of an image sensor, the area of interface between an N-type region and a P-type region is increased, such as through the use of an interstitial P+-type region or an interstitial P-type region. By increasing the interface area, greater well capacity can be attained. Further, this also enhances depletion of the photodiode. By changing the shape of the N-type layer, an increase in the area of the interface between the P-type region and N-type layer can be attained. While the types of shapes used for the N-type layer are many, the present invention is directed towards a photodiode with an increased interface area between the P-type and N-type regions.
摘要:
The present disclosure introduces a simple method for reducing the capacitance of the floating diffusion node of a CMOS image sensor and consequently improving the image sensor's sensitivity. While reducing parasitic capacitances such as the capacitance between the transfer gate and the floating node, the proposed device layouts, in which the channel width of the detection section is different from the channel width of the photoelectric conversion element, demand no more than what is required for the fabrication of the traditional layouts.
摘要:
A readout gate electrode is selectively formed on a silicon substrate. An N-type drain region is formed at one end of the readout gate electrode, and an N-type signal storage region is formed at the other end thereof. A P+-type surface shield region is selectively epitaxial-grown on the signal storage region, and a silicide block layer is formed on the surface shield region to cover at least part of the signal storage region. A Ti silicide film is selective epitaxial-grown on the drain region.
摘要:
A solid-state image sensor comprises a semiconductor substrate, a photoelectric conversion portion formed above the semiconductor substrate, and noise cancelers each formed, adjacent to the photoelectric conversion portion, on the semiconductor substrate through an insulating film, for removing noise of a signal read from the photoelectric conversion portion, wherein the semiconductor substrate has a conductive type opposite to a conductive type of a charge of the signal, and has a first region where concentration of impurities for determining the conductive type is high and a second region where concentration of the impurities on the first region is low.
摘要:
An amplifying solid-state image sensor includes a semiconductor substrate, and a plurality of unit pixels arranged on the semiconductor substrate in a two-dimensional manner, in which each of the plurality of unit pixels includes a photodiode for performing the photoelectric conversion, a storage diode for storing electric signal charge obtained by the photodiode, an amplifying transistor for amplifying the electric signal charge stored in the storage diode, and a signal reading section for reading a signal voltage from the amplifying transistor, and in which each of the plurality of unit pixels has a first active region and a second active region in which the second active region has the same conductivity type as that of the semiconductor substrate and an impurity concentration higher than that of the semiconductor substrate, the photodiode in each of the unit pixels is formed in the first active region, and the amplifying transistor is formed in the second region. With this configuration, it is preferable the photodiode has near a surface thereof a pinned photodiode structure in which a photodiode surface high-concentrated impurity region is formed.
摘要:
An image sensor has at least two photodiodes in each unit pixel. A high dynamic range is achieved by selecting different exposure times for the photodiodes. Additionally, blooming is reduced. The readout timing cycle is chosen so that the short exposure time photodiodes act as drains for excess charge overflowing from the long exposure time photodiodes. To improve draining of excess charge, the arrangement of photodiodes may be further selected so that long exposure time photodiodes are neighbored along vertical and horizontal directions by short exposure time photodiodes. A micro-lens array may also be provided in which light is preferentially coupled to the long exposure time photodiodes to improve sensitivity.
摘要:
An active pixel using a transfer gate that has a polysilicon gate doped with indium. The pixel includes a photosensitive element formed in a semiconductor substrate and an n-type floating node formed in the semiconductor substrate. An n-channel transfer transistor having a transfer gate is formed between the floating node and the photosensitive element. The pixel substrate has a laterally doping gradient doped with an indium dopant.
摘要:
An active pixel using a transfer gate that has a polysilicon gate doped with indium. The pixel includes a photosensitive element formed in a semiconductor substrate and an n-type floating node formed in the semiconductor substrate. An n-channel transfer transistor having a transfer gate is formed between the floating node and the photosensitive element. The pixel substrate has a laterally doping gradient doped with an indium dopant.
摘要:
A light sensor cell includes a photosensitive element, a floating diffusion region, and a gate oxide disposed between the photosensitive element and the floating diffusion region. The gate oxide has a non-uniform thickness, with a greater thickness near the photosensitive element and a lesser thickness near the floating diffusion region. A transfer gate is disposed on the gate oxide. The transfer gate has a non-uniform threshold voltage, with a greater threshold voltage near the photosensitive element and a lesser threshold voltage near the floating diffusion region.