Abstract:
In the field of optical networks, a laser, a laser modulation method and a laser combination system are disclosed. The laser includes a gain medium, a resonant cavity, and a second microring resonator. The resonant cavity includes a first cavity mirror and a second cavity mirror. The first cavity mirror is located at one port of the gain medium, the second cavity mirror is located at another port of the gain medium, and the second cavity mirror includes a splitter, a first microring resonator, and a reflecting grating.
Abstract:
An optoelectronic device includes a packaged part and a core component. The core component includes a chip subcarrier and an optoelectronic chip. The device also includes a connecting plate that forms a coplanar waveguide transmission line together with the ground through a high-frequency transmission line and an isolation dielectric. The coplanar waveguide transmission line and a low-frequency line are connected to the packaged part and the core component and are configured to transmit a high-frequency signal and a low-frequency signal between the packaged part and the core component.
Abstract:
Example wavelength tunable lasers are described. One example wavelength tunable laser includes a reflective semiconductor optical amplifier, three couplers, and at least two microring resonators. The reflective semiconductor optical amplifier is connected to one port of the first coupler. Some of the at least two microring resonators are arranged between another port of the first coupler and one port of the second coupler, the others of the at least two microring resonators are arranged between a third port of the first coupler and a second port of the second coupler, and a third port and a fourth port of the second coupler are connected to two ports of the third coupler.
Abstract:
An optical coupler for use in optical communication includes a buried layer, a support layer, a waveguide layer, and an upper cladding layer. In a height direction, the support layer is located between the buried layer and the waveguide layer, and the waveguide layer is located between the support layer and the upper cladding layer. In a width direction, the waveguide layer and the support layer are located inside the upper cladding layer. A material of the waveguide layer is different from a material of the support layer. The support layer is located inside the upper cladding layer such that two sides of the support layer include the upper cladding layer.
Abstract:
An optical module includes a body and at least one heat dissipation structure. The body has a first end face and a second end face. The first end face of the body has at least one of an optical interface or an electrical interface, and the second end face faces opposite to the first end face. The at least one heat dissipation structure is located on the second end face and/or a side face of the body and can dissipate heat on a surface of the body.
Abstract:
An optical frequency comb light source and an optical frequency comb generation method, where the light source includes a laser diode, a coupler, a Kerr nonlinear device, a beam splitter, and a phase shifter. The laser diode is connected to one input port of the coupler, and the other input port of the coupler is connected to an output port of the phase shifter. An output port of the coupler is connected to an input port of the Kerr nonlinear device. An output port of the Kerr nonlinear device is connected to an input port of the beam splitter. One output port of the beam splitter is connected to an input port of the phase shifter. The other output port of the beam splitter is configured to output a plurality of optical frequency combs. A multi-wavelength light source with relatively high power may be provided.
Abstract:
A coherent transmitter includes a first beam splitter that splits an input first optical signal to obtain a second optical signal and a third optical signal, a first modulator that modulates the second optical signal to obtain a first modulated signal, a phase shift adjustment unit that adjusts a phase of a first sub-signal in the first modulated signal and adjusts a phase of a fourth sub-signal in the phase-adjusted first sub-signal, a first beam combiner that combines a second sub-signal in the first modulated signal and the phase-adjusted fourth sub-signal to obtain a first combined signal, a first PD that performs optical-to-electrical conversion on the first combined signal to obtain a first electrical signal, and a controller that controls, based on the first electrical signal, a voltage applied to the phase shift adjustment unit.
Abstract:
An optical modulator includes a waveguide layer, an electro-optical material layer, and electrodes. The waveguide layer includes a sub-wavelength waveguide; the electro-optical material layer is disposed on a surface of the sub-wavelength waveguide, and the sub-wavelength waveguide is configured to diffuse a light field at the waveguide layer into the electro-optical material layer; the electrodes are disposed on a surface of the electro-optical material layer, and a connection line between the electrodes is parallel to a plane on which the electro-optical material layer is located, or the electrodes are disposed on two sides of the electro-optical material layer, and a connection line between the electrodes intersects with a plane on which the electro-optical material layer is located; and the electrodes are configured to apply an electrical signal to the electro-optical material layer.
Abstract:
An electro-optic modulator includes an input waveguide, a beam splitter connected to the input waveguide, a modulation arm that is disposed on each branch of the beam splitter and modulates a signal. Each modulation arm is correspondingly disposed with a first layer electrode and a second layer electrode. The first layer electrode is a high-frequency traveling wave electrode and is configured to change carrier concentration in the modulation arm, the second layer electrode is a direct current electrode having an inductor function, and an inductor formed in the second layer electrode is connected to the first layer electrode. The electro-optic modulator has functions of a bias tee, so that integration of the electro-optic modulator can be improved without affecting its performance. High-density packaging layout difficulty and cabling pressure can be effectively reduced, and cabling and packaging of a multi-channel high-speed signal on a base board can be implemented.
Abstract:
Embodiments of the present invention relate to the optical communication field and disclose an optical signal multiplexing method and an optical multiplexer. The method provided in the present invention includes: adjusting polarization states of two of four optical signals to be multiplexed, and preferably, mutually orthogonal to, the polarization states of the remaining two optical signals; combining one optical signal in the adjusted polarization state with one optical signal in the unadjusted polarization state into one optical signal through polarization multiplexing; and combining the two optical signals obtained through polarization multiplexing into one optical signal. When multiplexing is performed according to the solutions of the present invention, all optical signals are multiplexed into one optical signal based on polarization multiplexing, optical paths traveled by different optical signals differ slightly, and the optical power and the optical field energy distribution differ slightly between different optical signals in the finally multiplexed optical signal.