摘要:
Semiconductor structure formed on a substrate and process of forming the semiconductor. The semiconductor includes a plurality of field effect transistors having a first portion of field effect transistors (FETS) and a second portion of field effect transistors. A first stress layer has a first thickness and is configured to impart a first determined stress to the first portion of the plurality of field effect transistors. A second stress layer has a second thickness and is configured to impart a second determined stress to the second portion of the plurality of field effect transistors.
摘要:
The present invention provides a device structure and method of forming a finFet device having stacked fins. The method of the present invention comprises: providing a substrate with a first semiconductor layer on a first insulator layer, a second insulator layer on the first semiconductor layer, and a second semiconductor layer on the second insulator layer; forming a first fin and a second fin in the second semiconductor layer; masking the first fin; and forming a third fin in the first semiconductor layer, where the second fin is stacked on the third fin. The structure of the present invention comprises: a semiconductor substrate having a first semiconductor layer on a first insulator layer, a second insulator layer on the first semiconductor layer, and a second semiconductor layer on the second insulator layer; a first and second fin formed in the second semiconductor layer; and a third fin formed in the first semiconductor layer, where the second fin is stacked on the third fin.
摘要:
A method is provided for producing a fin structure on a semiconductor substrate using a thin SiGe layer to produce a void between a silicon substrate and a silicon fin portion. A fin structure produced by such a method is also provided.
摘要:
In producing complementary sets of metal-oxide-semiconductor (CMOS) field effect transistors, including nMOS and pMOS transistors), carrier mobility is enhanced or otherwise regulated through the use of layering various stressed films over either the nMOS or pMOS transistor (or both), depending on the properties of the layer and isolating stressed layers from each other and other structures with an additional layer in a selected location. Thus both types of transistors on a single chip or substrate can achieve an enhanced carrier mobility, thereby improving the performance of CMOS devices and integrated circuits.
摘要:
The present invention provides a strained Si directly on insulator (SSDOI) substrate having multiple crystallographic orientations and a method of forming thereof. Broadly, but in specific terms, the inventive SSDOI substrate includes a substrate; an insulating layer atop the substrate; and a semiconducting layer positioned atop and in direct contact with the insulating layer, the semiconducting layer comprising a first strained Si region and a second strained Si region; wherein the first strained Si region has a crystallographic orientation different from the second strained Si region and the first strained Si region has a crystallographic orientation the same or different from the second strained Si region. The strained level of the first strained Si region is different from that of the second strained Si region.
摘要:
The present invention provides a strained-Si structure, in which the nFET regions of the structure are strained in tension and the pFET regions of the structure are strained in compression. Broadly the strained-Si structure comprises a substrate; a first layered stack atop the substrate, the first layered stack comprising a compressive dielectric layer atop the substrate and a first semiconducting layer atop the compressive dielectric layer, wherein the compressive dielectric layer transfers tensile stresses to the first semiconducting layer; and a second layered stack atop the substrate, the second layered stack comprising an tensile dielectric layer atop the substrate and a second semiconducting layer atop the tensile dielectric layer, wherein the tensile dielectric layer transfers compressive stresses to the second semiconducting layer. The tensile dielectric layer and the compressive dielectric layer preferably comprise nitride, such as Si3N4.
摘要翻译:本发明提供一种应变Si结构,其中该结构的nFET区域被拉紧并且该结构的pFET区域被压缩而变形。 广义上,应变Si结构包括基底; 所述第一层叠堆叠包括位于所述衬底顶部的压缩介电层和位于所述压缩介电层顶部的第一半导体层,其中所述压缩介电层将拉伸应力传递到所述第一半导体层; 以及在所述衬底顶部的第二层叠堆叠,所述第二层叠堆叠包括位于所述衬底顶部的拉伸介电层和位于所述拉伸介电层顶部的第二半导体层,其中所述拉伸介电层将压缩应力传递到所述第二半导体层。 拉伸介电层和压电介电层优选包括氮化物,例如Si 3 N 4 N 4。
摘要:
Semiconductor structure and method to simultaneously achieve optimal stress type and current flow for both nFET and pFET devices, and for gates orientated in one direction, are disclosed. One embodiment of the method includes bonding a first wafer having a first surface direction and a first surface orientation atop a second wafer having a different second surface orientation and a different second surface direction; forming an opening through the first wafer to the second wafer; and forming a region in the opening coplanar with a surface of the first wafer, wherein the region has the second surface orientation and the second surface direction. The semiconductor device structure includes at least two active regions having different surface directions, each active region including one of a plurality of nFETs and a plurality of pFETs, and wherein a gate electrode orientation is such that the nFETs and the pFETs are substantially parallel to each other.
摘要:
Structures and methods of manufacturing are disclosed of dislocation free stressed channels in bulk silicon and SOI (silicon on insulator) CMOS (complementary metal oxide semiconductor) devices by gate stress engineering with SiGe and/or Si:C. A CMOS device comprises a substrate of either bulk Si or SOI, a gate dielectric layer over the substrate, and a stacked gate structure of SiGe and/or Si:C having stresses produced at the interfaces of SSi(strained Si)/SiGe or SSi/Si:C in the stacked gate structure. The stacked gate structure has a first stressed film layer of large grain size Si or SiGe over the gate dielectric layer, a second stressed film layer of strained SiGe or strained Si:C over the first stressed film layer, and a semiconductor or conductor such as p(poly)-Si over the second stressed film layer.